
Università degli Studi di Padova

Dipartimento di Matematica “Tullio Levi-Civita”

PhD Program in
Mathematical Sciences

PhD Thesis

Around the Minimalist Foundation:
(Co)Induction and Equiconsistency

Supervisors: Candidate:
Prof. Maria Emilia Maietti Pietro Sabelli
Dott. Samuele Maschio

Academic Year 2023/2024

Ringraziamenti

Desidero innanzitutto ringraziare i miei relatori Milly e Samuele, per avermi
trasmesso la loro conoscenza e la loro inestimabile passione. Ringrazio tutto il
gruppo di logica padovano per i preziosi confronti che non hanno mai mancato
di arricchirmi: Cipriano, Giovanni, Francesco e Silvia. Infine ringrazio la mia
famiglia per l’affettuoso supporto. E Federica, per essermi stata vicina.

1

Contents

1 An Introduction to the Minimalist Foundation 4
1.1 Scope and Methods . 5

1.1.1 Formal Topology . 6
1.2 Compatibility with foundational approaches 7

1.2.1 Computational interpretation of constructivism 8
1.2.2 Bishop constructivism 9
1.2.3 Classical predicativism à la Weyl 9

1.3 Towards a formal notion of compatibility 11
1.4 Levels of abstraction . 14
1.5 Types variety . 18

1.5.1 Comparison with other foundations 20
1.6 The formal calculi . 24

1.6.1 Minimal Type Theory mTT 28
1.6.2 Extensional Minimal Type Theory emTT 31

1.7 What is like to do mathematics in it? 35
1.7.1 Different notions of function 35
1.7.5 Interaction between logic and type theory 37
1.7.9 Basic set theory . 41
1.7.10 A categorical account 44

1.8 Compatibility results . 50

2 Inductive and Coinductive Predicates 54
2.1 Overview . 55
2.2 (Co)Inductive predicates in emTT 56
2.3 (Co)Inductive predicates in mTT 62
2.4 Topological (co)induction in MF 64
2.5 (Co)Induction in MLTT . 70

2.5.1 Induction in MLTT 71
2.5.5 Coinduction in MLTT 77

2.6 Compatibility results . 80

2

3 Reversing the level structure 83
3.1 Overview . 84
3.2 Propositional extensionality 85
3.3 Canonical Isomorphisms . 87
3.4 Conservativity of propositional extensionality 93
3.5 Equiconsistency of the two levels 98

4 The classical version 101
4.1 Overview . 102
4.2 The double-negation translation 103
4.3 Compatibility with classical predicativism à la Weyl 108
4.4 Equiconsistency of the Calculus of Constructions with its clas-

sical version . 109

Conclusions 113

A Rules of the Calculi 122
A.1 Minimal Type Theory mTT 123

A.1.1 Structural rules . 123
A.1.2 Type constructors . 124

A.2 Extensional Minimal Type Theory emTT 129
A.2.1 Structural rules . 129
A.2.2 Type constructors . 130

A.3 Rules for inductive constructors in MLTT 138

3

Chapter 1

An Introduction to the
Minimalist Foundation

4

Chapter Abstract

In this preliminary chapter, we will introduce the reader to the Min-

imalist Foundation, both in its philosophical and technical aspects.

In doing so, we derive some essential results which we will employ

throughout the later chapters.

1.1 Scope and Methods

As opposed to classical mathematics, which relies on an established stan-
dard foundation, namely the axiomatic Zermelo-Fraenkel set theory ZF (of-
ten extended with the Axiom of Choice), constructive mathematics enjoys a
variety of possible foundations in which it can be formalised and developed.
They come from a wide range of fields: axiomatic set theory, such as Aczel’s
constructive set theory CZF [AR10]; category theory, such as the internal
language of a topos TTopos [Mai05]; and type theory, such as Martin-Löf’s
type theory (intensional MLTT [NPS90], or extensional eMLTT [Mar84]),
Coquand-Paulin’s Calculus of Inductive Constructions CIC [CP90], and Ho-
motopy Type Theory HoTT [Uni13]. Each field and system carries its phi-
losophy, language, techniques and insights. We refer to this state of affairs
as pluralism in foundations.

Since those foundations often use different, incompatible principles, math-
ematics performed in one cannot be directly compared with that developed
in another. To help in this task and maximise the benefits of pluralism,
the Minimalist Foundation MF, first conceived by Maietti and Sambin in
[MS05] and then fully formalised by Maietti in [Mai09], was introduced to
serve as a common core for classical and constructive mathematics: extrinsi-
cally, through its compatibility with other existing theories in the literature,
meaning that definitions, theorems and proofs written in its formalism can
be exported soundly in the most relevant foundations, as the ones recalled
above; and intrinsically, by themodularity of its system, which can be flexibly
extended to accommodate one’s favourite mathematical style – for example,
in this work we will discuss its extension with inductive and coinductive
definitions (Chapter 2), with propositional extensionality (Chapter 3), and
with classical logic (Chapter 4). Of course, these two aspects are closely
related, and in many cases compatibility results are achieved by showing
that the theory in question is an extension of the Minimalist Foundation, so
that they can also be read as results about its modularity; this is indeed the
case of most of the type theories mentioned above [Mai09; CM22], including
the internal language of toposes [Mai05], and, less trivially, of axiomatic set
theories [MS22].

5

The design principle allowing the Minimalist Foundation to meet those
desired properties, whose applications will be encountered in many occasions
throughout this introductory chapter, is expressed by the slogan minimal in
assumptions, maximal in distinctions. On the one hand, fewer assumptions
keep the proof-theoretic strength of the system low and enhance its modu-
larity; on the other hand, since we want our foundation to be expressively
rich enough for developing non-trivial mathematics, many different notions
have to be introduced primitively.

The first and foremost instance of such principle is that MF does not
consist of a single theory, but of two distinct theories, corresponding to two
different levels of abstraction. More in detail, MF consists of:

• an extensional level, called emTT for extensional minimal type theory,
which is a calculus close to the ordinary mathematical language and
practice, understood as the intended place to formalise and develop
predicative constructive mathematics;

• an intensional level, called mTT for minimal type theory, which is a
calculus acting as a functional programming language enjoying a Kleene
realisability interpretation [TD88];

• an interpretation, called quotient or restore interpretation, of the ex-
tensional level into a quotient model built over the intensional one.

We refer to this situation by saying that MF is a two-level foundation
[Mai09].

The presence of two levels makes it possible, from time to time, to choose
the appropriate one depending on the nature of the foundation to be com-
pared. This drastically improves the compatibility of the overall system and
actually reveals two distinct common cores: one among intensional theories
such as Martin-Löf’s type theory and the Calculus of Constructions; and
the other among extensional ones, such as axiomatic set theories and the
internal language of toposes. What is more, having two levels turns out to
be compulsory for a foundation which wants to be compatible with all the
different interpretations of constructive mathematics, since, as we recall in
Section 1.2, they give rise to conflicting demands that no single theory can
fulfil at once.

1.1.1 Formal Topology

Historically, topology has always been a stress test for the formalisation of
mathematics; this is especially true for predicative constructive mathematics,

6

in which even the traditional definition of topological space is unacceptable
given its use of the Power-set Axiom. Formal Topology is the study of topol-
ogy in a constructive and predicative setting put forward by P. Martin-Löf
and G. Sambin in [Sam87]; such notion was recently enriched to that of basic
topology, which primitively represents the basic open and closed subsets (see
[Sam03]) and whose definition is predicatively sound.

The desire of having a suitable foundation for the development of Formal
Topology was the other main impulse for the introduction of the Minimalist
Foundation. In turn, Formal Topology witnesses that a notoriously difficult
subject for formalisation as that of topology can be carried out in MF,
and consequently that non-trivial mathematics can be obtained in it with
little formalisation effort. Sambin’s book [Sam24] is a major witness in the
philosophical and technical aspects of this intertwined relation between the
formal system and the goal object of its formalisation.

In Chapter 2, we will contribute to the formalisation of Formal Topology
by showing a tight correspondence between the (co)inductive generation of
basic topologies and other general-purpose schemes of (co)induction.

1.2 Compatibility with foundational approaches

The pluralist vision pursued by the Minimalist Foundation, presented above
in terms of compatibility with fully formal foundations, does not end, nor
start, with them. General approaches to the foundations of mathematics,
independently to their eventual implementations in formal systems, have
nevertheless provided a crucial motivation for its introduction.

On a very ground level, this is the case of the broad spectrum of construc-
tive mathematics, as opposed to classical mathematics; and that of predica-
tive mathematics, as opposed to impredicative mathematics. It is clear that,
if a foundation wants to be compatible with both pairs of opposing philoso-
phies, it must embrace the firsts, i.e. be constructive and predicative, since
everything that can be proved in them can also be proved in the seconds,
while the reverse does not apply. In formal terms, a minimum requirement
(and some might even consider it sufficient) to be constructivist is to reject
– that is not to validate – the Law of the Excluded Middle LEM; thus, the
underlying logic of the system must be intuitionistic. An analogous role is
played for predicativism by the Power-set Axiom PSA, which must be re-
jected to prevent circular definitions.

LEM
φ prop

φ ∨ ¬φ true
PSA

A set

P(A) set

7

Starting from that, there are different combinations and interpretations
in which these philosophies can be delineated. We now recall those having
high conceptual relevance for the Minimalist Foundation and for foundations
in general.

1.2.1 Computational interpretation of constructivism

The recursive interpretation of constructive mathematics wants every notion
to be effective, computable. For intuitionistic logic, this is the case of the
Brouwer-Heyting-Kolmogorov interpretation, which regards proofs as algo-
rithms, thus holding in particular the validity of the Axiom of Choice.

(∀x ∈ A)(∃y ∈ B)R(x, y)⇒ (∃f ∈ A→ B)(∀x ∈ A)R(x, f(x)) (AC)

On the other hand, in the recursive interpretation of arithmetic, every func-
tion is computable, that is programmable as a Turing machine; such view
validates the formal Church-Turing thesis

(∀f ∈ N→ N)(∃e ∈ N)(∀x ∈ N)(∃y ∈ N)(T(e, x, y) ∧ U(y) =N f(x)) (CT)

where T(e, x, y) is the Kleene predicate expressing that y is the encoding of
the computation history of the computable function encoded by e on input
x, and U(y) ∈ N is the output of such computation.

In [Mai09], the authors proposed the consistency of a theory with AC+CT
as a formal criterion of compatibility with the computable interpretation
of constructivism. More in detail, they named proofs-as-programs theories
those enjoying program extraction from their proofs through a realisability
interpretation à la Kleene [TD88] validating AC+ CT.

This strict requirement highly conflicts with the usual mathematical prac-
tice and clearly shows the necessity of a two-level structured foundation. In
fact, the pair of axioms AC + CT is incompatible both with LEM, and with
the principle of function extensionality

(∀f, g ∈ A→ B)((∀x ∈ A)f(x) =B g(x) ⇒ f =A→B g) (funext)

This has been proved in [TD88] within the basic setting of intuitionistic
arithmetic of finite types HAω.

HAω + AC+ CT+ funext ⊢ 0 = 1

HAω + AC+ CT+ LEM ⊢ 0 = 1

These behaviours rule out from being proof-as-program theories not only
classical foundations but also extensional constructive theories such as CZF

8

and TTopos, and even intensional theories with extensional features such as
HoTT.

Moreover, even among full intensional type theories, it is still an open
problem to determine whether the impredicative ones such as CIC can be
considered proofs-as-programs theories; until recently, the same question was
open for intensional theories satisfying the ξ-equality rule of lambda abstrac-
tion

ξ
t(x) = s(x) ∈ B(x) [x ∈ A]

(λx ∈ A)t(x) = (λx ∈ A)s(x) ∈ (Πx ∈ A)B(x)

such as the standard versions of MLTT; this was answered positively in
[Péd24].

The intensional level mTT of MF (which indeed does not assume the
above ξ-rule) and a version of MLTT without the ξ-rule were proved in
[IMMS18] to be proofs-as-programs theories. Here, it is perhaps worth stress-
ing that mTT does not validate neither AC nor CT, and in fact it is even
consistent with both their negations.

1.2.2 Bishop constructivism

Among the possible interpretations of constructive mathematics, the one put
forward by Bishop in his treatment of real analysis [BB12] is notably one of
the most oriented towards a pluralist view, which made it a natural bench-
mark for the design of MF. Bishop’s main aim was to develop constructive
mathematics not in opposition to classical mathematics but as a generalisa-
tion of the latter, while, at the same time, keeping the possibility of extracting
computational content from proofs.

Many systems, among which CZF, MLTT, and HoTT, were proposed
as possible formalisation of Bishop mathematics, and the Minimalist Foun-
dation was introduced as a common core among them. However, MF does
not claim to exactly capture Bishop mathematics; one of the main reasons is
that, while Bishop mathematics is compatible with classical, impredicative
mathematics such as that formalised by ZF, it is nevertheless incompatible
with classical predicativism, as we recall in the next subsection.

For a comprehensive discussion of the relationship between MF and
Bishop’s mathematics see [MS23b; CM24].

1.2.3 Classical predicativism à la Weyl

In Das Kontinuum [Wey18], Hermann Weyl advocated – and proved possible
– the development of real analysis in a classical and predicative fashion. One
of his main tenets was that to avoid any form of circularity, the continuum,

9

paradigmatically embodied by real numbers, should not be considered at
the same level as sets, such as that of natural numbers. In his words, not
the relationship of an element to a set, but of a part to a whole ought to
be taken as a basis for the analysis of a continuum. Real numbers, and,
more generally, the collection of subsets of a given set were something whose
existence was admissible, but not as an extensionally determinate domain;
in particular, no new set could be formed by quantification over them. A
similar treatment was applied to the collection of functional relations – i.e.
subsets of pairs R ∈ P(A×B) satisfying the functionality condition

(∀x ∈ A)(∃!y ∈ B)R(x, y)

– as opposed to the set of rule-based functions.
As the reader will have the opportunity to acknowledge, the design and

terminology of the Minimalist Foundation closely resemble the ideas fore-
shadowed in Weyl’s treatment. In this elaborate, we will present meta-
mathematical results allowing us to upgrade such correspondence to a claim
of compatibility. In particular, in Chapter 4 we will prove that the extensional
level emTT of MF is equiconsistent with its classical version; from this, we
will deduce that the classical version of emTT is predicative and, in particu-
lar, that the collections of real numbers à la Dedekind and number-theoretic
functional relations do not form sets in it; in turn, these facts philosophically
allow us to see it as a formal foundation for classical predicativism à la Weyl,
and compatibility with it is achieved.

We remark that compatibility with classical predicative mathematics à la
Weyl is rather rare among constructive predicative foundations, since most
of them, such as CZF, MLTT, or HoTT, become impredicative when they
assume classical logic – in particular, the first one notoriously becomes ZF.
The source of their incompatibility is to be traced to the Axiom of Unique
Choice

(∀x ∈ A)(∃!y ∈ B)φ(x, y)⇒ (∃f ∈ A→ B)(∀x ∈ A)φ(x, f(x)) (AC!)

This seemingly innocent axiom is, quoting M. E. Maietti, “a bomb ready
to explode”; where the thing exploded is the proof-theoretic strength of the
system, and the trigger is precisely LEM. This behaviour can be observed
again in the simple case of intuitionistic arithmetic of finite types

HAω + AC! + LEM ⊢ CA

where impredicativity is encoded through the Comprehension Axiom

(∃f ∈ N→ N)(∀x ∈ N)(φ(x)⇔ f(x) = 1) (CA)

10

In turn, HAω + AC! can be easily interpreted in all the theories aforemen-
tioned, but not in MF, both of whose levels have been proved in [Mai17] not
to validate AC!.

The results recalled in this subsection and their refinements are proved
and discussed in [CM24], together with an in-depth analysis of the relations
between MF and Weyl’s mathematics.

To sum up, MF is compatible with the computational interpretation
of constructivism through its intensional level mTT; it is compatible with
the various systems proposed for formalising Bishop mathematics, and, in
particular, its extensional level emTT sits at the crossroad between Bishop
constructivism and Weyl predicativism.

1.3 Towards a formal notion of compatibility

In the previous sections, we often referred to the notion of compatibility
between theories, suggesting that a theory is compatible with another one if
the former can be interpreted in the latter while preserving the meaning of
its logical and set-theoretical entities; and we presented this property as the
main raison d’être of the Minimalist Foundation, stating its compatibility
with both formal foundations and with general foundational approaches for
mathematics. In this section we elaborate on the notion of compatibility
between theories based on its definition in [CM22].

First of all, it is clear that our account of this notion relative to pre-formal
foundational approaches, by their very nature, could not be ever stated fully
formally – although, on a case-by-case basis, it can be endorsed by math-
ematical results, such as those mentioned in Section 1.2. Therefore, in the
following we restrict our attention to the case of formal theories.

As a first approximation, we say that a theory T1 is compatible with
another theory T2 if there exists an interpretation I : T1 → T2 which preserves
the intended way of formalising mathematics in them, and in this case I is
called a compatible interpretation. Pictorially, we are asking for the following
diagram to commute.

mathematics

T1 T2

formalisation formalisation

I

Clearly, this definition is still fairly philosophical; nevertheless, in most prac-
tical cases, the intended meaning of the dashed arrow in the diagram above

11

is evident and unambiguous, as the following examples will hopefully show.
We will also be interested in the particular case where the theory T2

is an extension of the theory T1, meaning that the former is obtained by
extending the latter with new axioms or inference rules. In such a case, if
the compatible interpretation I is the identity interpretation – that is, the
interpretation which sends each expression of the source theory to itself – we
say that T2 is a compatible extension of T1.

Examples of compatible interpretations are the standard model of arith-
metic in axiomatic set theory, which interprets Peano’s arithmetic into clas-
sical set theory PA → ZF; or the identical interpretation of the construc-
tive version of Zermelo–Fraenkel set theory into the standard, classical one
CZF ↪→ ZF. To test their compatibility, consider the pre-formal notion
of the natural number two; it is formally expressed in PA as the term SS0;
while, both in CZF and ZF, as the set {∅, {∅}}. Both interpretations respect
such formalisations, and the same goes for all other terms and propositions
of arithmetic.

As non-examples, consider Gödel’s double negation translation of classical
Peano Arithmetic into intuitionistc Heything Arithmetic PA → HA, or
the identical interpretation of Martin-Löf’s type theory into Homotopy Type
TheoryMLTT ↪→ HoTT. In both cases, an existential statement formalised
in the domain theory is sent to something that does not correspond at all to
the formalisation of an existential statement in the target theory; e.g. the pre-
formal proposition there exists a natural number equal to itself is formalised
as the type (Σx ∈ N)Id(N, x, x) inMLTT, but as its propositional truncation
∥(Σx ∈ N)Id(N, x, x)∥ in HoTT; on the other hand, it is formalised both in
PA and HA as the formula ∃x(x = x), which is however sent by the double-
negation translation to ¬¬∃x(x = x).

Notice that the above examples and non-examples showed that the iden-
tical interpretation of a theory into an extension of it can or cannot be a
compatible interpretation: the theory PA is a compatible extension of HA,
while HoTT is not a compatible extension of MLTT.

As a second step, we can refine the above definition of compatibility by
replacing pre-formal mathematics with a chosen theory F acting as a lingua
franca between T1 and T2. When comparing foundations for constructive
mathematics, this role can be played by theories such as HAω in [TD88],
or fragments of intuitionistic second-order arithmetic, since these will cer-
tainly possess an intended interpretation in both T1 and T2 if these latter
are proposed as sufficiently rich theories for the foundations of mathematics.
Then, given two interpretations F → T1 and F → T2, we say that T1 is
compatible with T2 relatively to the given interpretations of F if there exists

12

an interpretation I : T1 → T2 which makes the following triangle commute.

F

T1 T2I

We stress once more that while the general notion of compatibility de-
scribed here is not yet fully formal (simply because the one of theory itself is
not), it can already serve well as a reference in each specific case. Therefore,
in the rest of the discussion, and especially in Section 1.8, we will rely on
this last notion with respect to HAω to state the compatibility of MF with
other foundations.

Finally, we will often resort to two auxiliary concepts introduced hereafter
in proving compatibility results between theories.

Constructors encodings We will often find ourselves in the situation of
having to prove that a given dependent type theory is expressive enough
to encode a given type constructor. To this end, we introduce the following
notion, which will be often referred to in Section 1.8 and throughout Chapter
2.

If T is a dependent type theory and C is a type constructor – intended
as the sets of its rules defined in the language of T – we say that T encodes
C if each new symbol appearing in C can be interpreted in T in such a way
that all the rules of C are valid under this interpretation. Moreover, given
two type constructors C and D, we say that they are mutually encodable over
T if T + C encodes D and T + D encodes C.

As an example, consider the type of natural numbers N primitively defined
as an inductive type in the usual way; it is encodable as follows in any version
of MLTT having the singleton type N1 and the list constructor List.

N :≡ List(N1)

0 :≡ ϵ

succ(n) :≡ cons(n, ⋆)

ElN(n, b, (x, z).c) :≡ ElList(n, b, (x, y, z).c)

Alternatively, consider the impredicative encoding of the following logical

13

constructors already possible in the base Calculus of Constructions.

⊥ :≡ (∀ψ ∈ Prop)ψ

φ⇒ ψ :≡ (∀x ∈ φ)ψ
φ ∧ ψ :≡ (∀ϕ ∈ Prop)((φ⇒ ψ ⇒ ϕ)⇒ ϕ)

φ ∨ ψ :≡ (∀ϕ ∈ Prop)((φ⇒ ϕ)⇒ (ψ ⇒ ϕ)⇒ ϕ)

(∃x ∈ A)φ(x) :≡ (∀ψ ∈ Prop)((∀x ∈ A)(φ(x)⇒ ψ)⇒ ψ)

Id(A, a, b) :≡ (∀P ∈ A→ Prop)(P (a)⇒ P (b))

All the above encodings satisfy the intuitionistic rules of the corresponding
logical constructor. In particular, the last encoding satisfies the rules of
Leibniz’s equality.

Equivalence of theories Usually, we want to consider theories indepen-
dently of their specific presentation. For this reason, we introduce the fol-
lowing notion of equivalence between theories.

Given a theory T , proposed as a foundation for mathematics, we can con-
sider the category SetT of sets and functions formalised in such foundation.
We then say that two foundational theories T1 and T1 are equivalent if the
corresponding categories of sets SetT1 and SetT2 are equivalent in the sense
of category theory.

1.4 Levels of abstraction

There is a long-dated and pervasive tension in type theory between inten-
sional and extensional representations of mathematical concepts. Intuitively,
mathematicians want to be able to consider mathematical objects indepen-
dently of their particular presentations, while computer scientists are always
bound to these. This has theoretical consequences: extensional type the-
ories are closer to ordinary mathematical language and practice, but their
computational properties are inferior, most notably they lack decidable type
checking, which makes them harder to implement in proof assistants; con-
versely, intensional type theories generally possess valuable computational
properties such as normalisation, but doing mathematics in them can be
limiting and cumbersome.

In the literature, we can distinguish two main opposite ways to tackle
this problem. In one direction, one wants to design intensional type theories
satisfying desired extensional features in such a way as not to destroy their
computational properties, so that one single theory can serve all purposes;

14

this is the spirit for example of Homotopy Type Theory and derived theories
such as Cubical Type Theory [SA21]; another example comes from proof
assistants such as Agda or Coq, which by default implement a version of
Martin-Löf’s type theory and the Calculus of Constructions validating η-
equality rules for Π- and Σ-types while retaining the decidability of type
checking. The other approach, pursued for example in [SV98] and [Hof95],
tries to model extensional type theories using intensional ones; according to
this paradigm, computer scientists should always be able to interpret in an
intensional theory what mathematicians work out extensionally.

Of the two approaches described above, the Minimalist Foundation, being
a two-level foundation, follows the latter. Indeed, its extensional level emTT
is a theory ideally thought for pen-and-paper mathematics, with all the de-
sired extensional features a mathematician would wish for, among which
equality reflection, function extensionality, subset extensionality, effective
quotients, and proof-irrelevance – moreover, in Chapter 3, we will show that
one can also conservatively assume propositional extensionality. Construc-
tions and proofs performed in the extensional level can then be interpreted
in the intensional one mTT, which is thought as a functional programming
language (with no extensional features whatsoever) for computer-aided for-
malisation of mathematics.

More specifically, the two levels emTT and mTT interact according
to Sambin’s forget-restore design principle [SV98], which states that exten-
sional concepts should be obtained from intensional ones by abstracting –
that is forgetting – irrelevant computational information, in such a way that
it should always be possible, knowing how an extensional object has been
constructed, to restore the missing data and implement it back by inten-
sional means. Both the forget and the restore part were implemented in
[Mai09]; the former, by designing emTT as a theory obtained by strength-
ening the equalities of types and terms of mTT and introducing a quotient
set constructor; the latter, by interpreting the extensional level into a quo-
tient model built over the intensional one. Technically, such implementation
acts with an hide externally-reveal internally mechanism: it hides the compu-
tational content of extensional judgements in their derivations, which belong
to the meta-theory; and it defines an interpretation able to read these latter,
and to reveal the computational content internally, as judgements of the in-
tensional level. A key example of retrieved computational content is the case
of proof-terms. In emTT, proof-terms are abstracted away by imposing a
single canonical term true, which, when it appears in a judgement of the form
true ∈ φ, does not convey any information about the proof used to assert the
truth of the statement φ. Nevertheless, a fully explicit proof-term can still
be recovered in mTT by reading a derivation of the judgement true ∈ φ.

15

The quotient interpretation of emTT into mTT is a cornerstone of the
Minimalist Foundation, and we think a simple hands-on example could be
useful to let the reader appreciate its basic functioning.

Example 1.4.1. Consider the following (derivable) judgement of emTT,
asserting the truth of a proposition in modular arithmetic

emTT ⊢ true ∈ (∃z ∈ N/≡3) z
2 =N/≡3 [1]

and suppose we know the following specific derivation of the above judgement
(where we have omitted for simplicity some branches).

N/≡3 set 2 ∈ N
I-Q

[2] ∈ N/≡3

1 ∈ N true ∈ 22 =N 3 · 1 + 1
I-∃

true ∈ (∃k ∈ N)22 =N 3k + 1
eq-Q

true ∈ [2]2 =N/≡3 [1]
I-∃

true ∈ (∃z ∈ N/≡3)z
2 =N/≡3 1

The quotient interpretation interprets the extensional quotient set N/≡3

as the intensional setoid (N,≡3), and, accordingly, the extensional equal-
ity predicate [n] =N/≡3 [m] as the intensional relation (∃k ∈ N)n =N 3k+m;
finally, it turns the whole derivation above into the following decidable judge-
ment of mTT.

mTT ⊢ ⟨2, 1, id(4)⟩ ∈ (∃n ∈ N)(∃k ∈ N)n2 =N 3k + 1

Notice that now the proof-term is completely explicit, allowing us in partic-
ular to retrieve a witness to the existential statement.

In turn, after having interpreted an extensional derivation of emTT as an
intensional judgement of mTT, we can extract from the latter a program,
in the form of a Gödel code. This can be done by following the interpre-
tation in [IMMS18] of mTT into a realisability model built in Feferman’s

predicative arithmetic of non-iterative fixpoints ÎD1 [Fef82]. We regard such
a realisability model as a third level of abstraction of MF, the lowest, whose
language is akin to a machine code.

Figure 1.1 depicts the three levels of abstraction of the Minimalist Foun-
dation, their conceptual connections (each corresponding to a formal in-
terpretation), and their intended users. Notice that, in principle, nothing
prevents mathematicians from working and developing mathematics at the
intensional or the realisability level – however, they must be prepared to
live in the so-called setoid hell, or, even worse, that of arithmetic encodings.
Likewise, the extensional and the realisability levels can be interpreted as
programming languages too, but the computational behaviour of the first is
poor, while the second is low-level.

16

Intended for Level

mathematicians emTT

computer scientists mTT

machines ÎD1

restore

implement

forget

Figure 1.1: Three levels of abstraction of MF

Remark 1.4.2. As proven in [CM22], HoTT has the peculiar property of
being able of interpreting in a compatible way both the intensional and the
extensional level ofMF. We expect this is also the case for other type theories
that follow the same approach described at the beginning of this section of
fitting in between full intensionality and full extensionality.

Moreover, we recall that the realisability interpretation of mTT in ÎD1

factors through a version of MLTT. This is expected, since MLTT can be
read as a functional programming language primitively enforcing the Curry-
Howard isomorphism inherent to the computational interpretation of con-
structivism (see the discussion in Subsection 1.2.1). In this sense HoTT,
being an extension of MLTT, is a theory capable of hosting even the realis-
ability level of MF.

Recall from Section 1.1 that a key property of MF is its modularity. We
close this section with a brief comment on how this feature should interact
with its threefold levels of abstraction.

A constructive mathematician working with the Minimalist Foundation
might want additional features to develop a specific topic – we remark here
that this scenario is perfectly expected, and even desired by a minimalist
foundation. To this end, it is not enough to extend the mathematician’s
level, namely emTT; to keep a realisability interpretation assuring that the
proofs still possess a computational content, the whole system of MF must
be extended to support the additional desired features. In practice, when
we want to add a new type constructor, this requires adding an extensional
version of it to emTT, an intensional version of it tomTT, and checking that
both the quotient model and the realisability interpretation can be upgraded
to support it.

This is exactly what happened in the case of (co)inductive methods of
Formal Topology [CSSV03; Sam03; Sam24]: the three levels of MF have

17

been extended in [MMR21] to support an inductive topological constructor,
and in [MMR22] to support a dual, coinductive counterpart; Chapter 2 will
be devoted to analyse such extensions under a different perspective, and to
establish new compatibility results for the extended version in the spirit of
[Mai19]. Another example in this direction is the work in [Bre15], which
extends the quotient interpretation to support the additional presence of
W-types in both emTT and mTT.

1.5 Types variety

In foundations, there are two important kinds of distinctions between entities.
The first is between logical and set-theoretical ones; in axiomatic set theories,
which are defined on top of predicate logic, or in logic-enriched type theories,
which are akin to multi-sorted logic, this separation is clear-cut and built-in;
however, when logic is part of a type theory, it can differ from the whole of it
with different degrees: the Calculus of Constructions treats logic as a prim-
itively distinct portion of the type theory; both in the internal language of
a topos and Homotopy Type Theory, logic is identified through a character-
isation, namely that of mono-types and h-propositions, respectively; finally,
in the extreme case of Martin-Löf’s type theory, the distinction disappears,
since its type theory fully identifies logic and set theory.

The second recurring distinction in foundations is on what is usually
called the size of a collection. We remark that a priori this has no relation
with the notion of cardinality from set theory; constructively, the size mea-
sured is not that of the number of elements in a given set or type, rather
it refers to the complexity of its construction. In this sense, axiomatic set
theories distinguish between sets and classes, while type theories usually dis-
tinguish between small and large types relative to a given universe. The
specific way this distinction is enforced in each theory determines its de-
gree of impredicativity, that is, the possibility of giving circular definitions;
when such power is unrestricted, it often leads to inconsistency (and this is
how historically the need for such distinction was first recognised); examples
of fully predicative theories, that is theories in which no amount of circu-
larity is allowed, are CZF and MLTT; controlled forms of impredicativity
are nevertheless common also in constructive mathematics, such as in the
Intuitionistic Zermelo-Frankel set theory IZF, CIC and TTopos.

The Minimalist Foundation embraces both of the above distinctions to the
maximum by identifying, in both of its levels emTT and mTT, four kinds
of types: small propositions, propositions, sets and collections – denoted
respectively props, prop, set and col. Formally, they are rendered as the

18

Logic Set theory

Effective props set

Open-ended prop col

Figure 1.2: Kinds in the Minimalist Foundation

following typehood judgements.

φ props φ prop A set A col

Sets are particular collections, just as small propositions are particular
propositions; moreover, a proposition (respectively, a small proposition) is
identified with the collection (respectively, the set) of its proofs. Eventually,
we have the square of inclusions between kinds of types depicted in Figure
1.2. The inclusions are formalised through the following rules.

props-into-prop
φ props
φ prop

props-into-set
φ props
φ set

prop-into-col
φ prop

φ col
set-into-col

A set

A col

The distinction between logic and set theory is clear: propositions are
statements that can be judged true, whereas sets and collections are domains
over which quantification can be performed and whose elements can be com-
pared for equality. On the other hand, the size distinction is deployed in
the Minimalist Foundation with a peculiar qualitative stance to it. Contrary
to a plain quantitative size label attached to an object, it reflects the philo-
sophical distinction between effective and open-ended domains. Intuitively,
a set is an inductively generated domain, such as the natural numbers N,
whose canonical elements are fixed in advance and are not subject to pos-
sible extensions of the ambient theory. On the contrary, the elements of a
collection could be potentially ever undetermined, consider for example the
subsets of natural numbers P(N), which may increase in number as soon
as the theory becomes more expressive. Accordingly, small propositions are
those propositions which have quantifiers and equality predicates restricted
to sets.

The distinction between effective and open-ended domains avoids impred-
icative definitions; in particular, in emTT one can form the power of a set,

19

but the resulting type is a collection.

A set

P(A) col

On the other hand, treating logic primitively, as in the Calculus of Con-
structions, allows to control the information flow from proofs to programs
and prevent choice principles from being validated. In MF, the compart-
mentalisation of logic is achieved through an additional refinement: that of
allowing the elimination rules of inductive propositional constructors to act
only towards propositions. The crucial consequences of this design are best
seen in the case of the existential quantifier. Consider the elimination rule
of the existential quantifier, and compare it to the one of dependent sum,
which can instead acts towards dependent collections.

E-∃

ψ prop

c ∈ (∃x ∈ A)φ(x) m(x, y) ∈ ψ [x ∈ A, y ∈ φ(x)]
El∃(c, (x, y).m) ∈ ψ

E-Σ

M(z) col [z ∈ (Σx ∈ A)B(x)]

c ∈ (Σx ∈ A)B(x) m(x, y) ∈M(⟨x, y⟩) [x ∈ A, y ∈ B(x)]

ElΣ(c, (x, y).m) ∈M(c)

Notice that it is always possible to extract the first component of a pair
c ∈ (Σx ∈ A)B(x) as the term π1(c) :≡ ElΣ(c, (x, y).x) ∈ A; however, the
same idea cannot (always) be used for extracting the witness of an existential
proof p ∈ (∃x ∈ A)φ(x), since the term El∃(p, (x, y).x) is bad typed whenever
A is not a proposition.

Finally, the main consequence of having logic included in the type theory
is that it allows to form new collections by comprehension with a proposition,
as well as new sets by comprehension with a small proposition. This is
achieved through the dependent sum constructor, as shown in the following
derived rules.

A col φ(x) prop [x ∈ A]
(Σx ∈ A)φ(x) col

A set φ(x) props [x ∈ A]
(Σx ∈ A)φ(x) set

1.5.1 Comparison with other foundations

It could appear somewhat paradoxical, but, despite constructive mathemat-
ics being defined by the fact that it takes existence seriously, in most of
its type-theoretical foundations the existential quantifier is not a primitive

20

concept, with decisive proof-theoretic consequences. Here, we argue that
this phenomenon is always the result of an extra assumption imposed on
the Minimalist Foundation’s square 1.2, resulting in the deletion of some
distinction.

More generally, as discussed in the beginning of this section, variants of
the MF square can be found in almost all foundations; the analysis of their
relationship is often decisive in obtaining compatibility results. We shall now
present the most important cases.

Second-order arithmetic The above examples of N and P(N) for set
and collection, respectively, are not casual. The MF square 1.2 can be
interpreted as an enhancement of the usual distinctions in (fragments of)
second-order arithmetic between the two sorts N and P(N), and between
arbitrary formulas and arithmetical ones, which are precisely those formulas
in which quantification is restricted to N (see Figure 1.3). In particular,
the intended interpretation of the arithmetic comprehension axiom ACA
[Sim09] fragment of second-order arithmetic into the Minimalist Foundation
is a direct formalisation of this idea.

Formulas Sorts

First-order arithmetical N

Second-order arbitrary P(N)

Figure 1.3: Entities in second-order arithmentic

Martin-Löf’s type theory In MLTT, where the propositions-as-sets
paradigm is enforced, the square of MF is horizontally collapsed (Figure
1.4). As a major consequence, the existential quantifier coincide with depen-
dent sum

(∃x ∈ A)φ(x) :≡ (Σx ∈ A)φ(x)

and AC gets validated.
Theorem 1.8.1 will show how to formally implement this specialisation

for the kinds of the intensional level, proving that MLTT is a compatible
extension of mTT.

21

Small small type

Large large type

Figure 1.4: Kinds in MLTT relative to a given type universe

Logic-enriched type theory When the types of MLTT are used to sort
logic, as it happens for example in the logic-enriched type theory of [GA06],
the square of the resulting theory (Figure 1.5) shares a closer resemblance
with that of MF; there, however, logic lacks comprehension, and it is entirely
separated from type theory.

Logic Type-theory

Small small prop small type

Large prop type

Figure 1.5: Entities in logic-enriched type theory

Calculus of (Inductive) Constructions In CIC, where an impredica-
tive universe of propositions is postulated, the MF square is – conversely to
MLTT – vertically collapsed (see Figure 1.6, where we ignored additional
size distinctions given by type universes); consequently, PSA holds, and the
existential quantifier is introduced with the usual impredicative encoding.

(∃x ∈ A)φ(x) :≡ (∀ψ ∈ Prop)((∀x ∈ A)(φ(x)⇒ ψ)⇒ ψ)

Analogously to MLTT, Theorem 1.8.2 will show how to formally implement
this specialisation for the kinds of the intensional level, proving that CIC is
a compatible extension of mTT.

Logic Set theory

prop type

Figure 1.6: Kinds in CIC

22

Homotopy Type Theory In HoTT (Figure 1.7), both logic and set the-
ory are identified with specific portions of the whole type theory through
the characterisation of the types h-levels, which counts how many iterations
of the identity types are needed to reach the unit type. The existential
quantifier is again defined through dependent sum, this time however it is
propositionally truncated to force the right h-level.

(∃x ∈ A)φ(x) :≡ ∥(Σx ∈ A)φ(x)∥

In this way, whilst AC does not hold, HoTT nevertheless validates AC!.
Due to the peculiar nature ofHoTT, the specialisation of kinds described

above has been formally performed in [CM22] both for the intensional level
mTT, and for the extensional one emTT, showing that they are both com-
patible with HoTT.

Logic Set theory

Small small h-prop small h-set

Large h-prop h-set

Figure 1.7: Kinds in the set-theoretic fragment of HoTT relative to a given
type universe

Internal language of toposes The internal language TTopos formulated
as in [Mai09], collapses the square vertically, since it is impredicative, and
characterise propositions as the so-called mono-types, that is types with at
most one element (Figure 1.8); in this way, it validates both AC! and PSA, and
existential statements can be defined both using the impredicative encoding
as shown for CIC, or, as shown in [Mai05], as quotients of dependent sums
by the trivial equivalence relation.

(∃x ∈ A)φ(x) :≡ ((Σx ∈ A)φ(x))/⊤

In Theorem 1.8.3 we will show how to formally implement this specialisa-
tion for the kinds of the extensional level, proving that TTopos is a compatible
extension of emTT.

23

Logic Set theory

mono-type type

Figure 1.8: Kinds in TTopos

Constructive set theory The theoryCZF not only distinguishes between
sets and classes, as the classical ZF does; it also considers a subclass of for-
mulas, called ∆0 or restricted formulas, again as those in which quantification
is performed only over sets; in particular, its axiom of predicative separation,
allows to create new sets by comprehensions using only ∆0-formulas. More-
over, by identifying a formula φ with the subsingleton {x |x = ∅ ∧ φ} it
generates by comprehension, one obtains the square in Figure 1.9. The sim-
ilarity to that of MF is evident; and an interpretation of MF into CZF is
easily achieved by specialising each vertex of the square following the stan-
dard set-theoretic interpretation of type theory (see [MS22] for a detailed
account).

Logic Set theory

Small ∆0-formula set

Large formula class

{−}

{−}

Figure 1.9: Entities in CZF

1.6 The formal calculi

In this section, we present the formal calculi mTT and emTT, formulated
as dependent type theories à la Martin-Löf [NPS90], and accounting for the
intensional and the extensional level of MF, respectively.

Preliminary, we recall that, in dependent type theories, where the defi-
nitions of language and derivability are intertwined, the expressions of the
calculi have to be introduced first with a so-called raw- or pre-syntax (see
[Str93]). This subtlety is often tacitly overlooked, since, for the sole pur-
pose of presenting a calculus, syntax can be introduced in fieri; however,

24

when formally dealing with operations on syntax such as interpretations and
translations, we must resort to it.

We recall that there are ways of presenting type theories which avoid re-
ferring to the pre-syntax at all; the syntax of those presentations is usually
called intrinsic or typed (as opposed to the extrinsic (pre-)syntax mentioned
above) since it coincides at the same time with the derivable judgements of
the theory (see [AK16]). The intrinsic approach usually relies on the seman-
tic notion of Dybjer’s Categories with Families [Dyb96], by using explicit
substitution and making judgemental equality coincide with the equality of
the meta-theory. Not to derail from the original presentation of the theory
in [Mai09], we followed the extrinsic approach.

Pre-syntax The pre-syntax of both emTT and mTT consists of pre-
contexts, pre-types, pre-propositions, and pre-terms. It is assumed fully
annotated, in the sense that each (pre-)term has all the information needed
to infer a putative (pre-)type it belongs to. Although for readability we
will leave a lot of annotations implicit, in some cases they will be displayed
explicitly e.g. to correctly define interpretations.

Substitution of a variable x for a pre-term t in an expression e will
be denoted with square brackets e[t/x]. Moreover, if we have a list of
pre-terms γ ≡ t1, . . . , tn, we denote with e[γ] the successive substitutions
e[t1/x1] · · · [tn/xn].

Notions of equality When dealing with the syntax of a dependent type
theory, we need to carefully distinguish three different notions of equality:

• meta-equality between entities in our meta-theory e1 ≡ e2; it will refer
often to equality between expressions of the pre-syntax, and in this
case it is called syntactic equality ; it will be also used to compare the
semantical results of interpetations;

• judgemental equality between types A = B and terms a = b ∈ A, with
the latter sometimes shortened as a = b when the common type is clear
from the context;

• the propositional equality type between two terms of a given type, which
is written Id(A, a, b) in the intensional level mTT, and Eq(A, a, b) in
the extensional one emTT; the former will be often abbreviated as
a =A b.

25

Notation We will throughout use the following standard type-theoretic
shorthands: we denote with → (resp. ×) a non-dependent Π-type (resp. a
non-dependent Σ-type), and we will reserve the arrow symbol⇒ to denote the
implication connective; we will often write f(a) as a shorthand for Ap(f, a);
we define negation, the true constant, and logical equivalence as follows:
¬φ :≡ φ⇒ ⊥, ⊤ :≡ ¬⊥, φ⇔ ψ :≡ φ⇒ ψ ∧ ψ ⇒ φ.

Form of judgements Both emTT and mTT have the following forms of
dependent judgements. First, we have the auxiliary judgement stating that
a telescopic list of variable assumptions is a well-formed context

Γ ctx with Γ ≡ x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)

then, we have typehood judgements, asserting that an expression in context
is a type of a certain kind

φ props [Γ] φ prop [Γ] A set [Γ] A col [Γ]

respectively, small propositions, propositions, sets, and collections; analo-
gously, there are type equality judgements, asserting that two expressions
are equal as types of a certain kind.

φ = ψ props [Γ] φ = ψ prop [Γ] A = B set [Γ] A = B col [Γ]

Finally, we have typing and term equality judgements.

a ∈ A [Γ] a = b ∈ A [Γ]

It will also be useful to consider the following judgement forms managing
telescopic substitutions

γ ∈ Γ [∆] γ = δ ∈ Γ [∆]

where γ and δ are list of pre-terms, and Γ and ∆ are pre-contexts. In par-
ticular, the judgement γ ∈ Γ [∆] states that γ ≡ t1, . . . , tn is a telescopic
substitution from the context ∆ to the context Γ ≡ x1 ∈ A1, . . . , xn ∈ An,
namely that the following primitive judgements hold.

t1 ∈ A1 [∆] · · · tn ∈ An[t1/x1] · · · [tn−1/xn−1] [∆]

Analogously, the judgement γ = δ ∈ Γ [∆] states that γ ≡ t1, . . . , tn and
δ ≡ s1, . . . , sn are equal telescopic substitution from the context ∆ to the

26

context Γ ≡ x1 ∈ A1, . . . , xn ∈ An, namely that the following primitive
judgements hold.

t1 = s1 ∈ A1 [∆] · · · tn = sn ∈ An[t1/x1] · · · [tn−1/xn−1] [∆]

As usual, when doing calculations or writing inference rules, the piece of
context common to all the judgements involved is omitted. Moreover, we
will often employ the placeholder type in a judgement of the form A type [Γ]
or A = B type [Γ] standing for one of the four kinds props, prop, set or col;
always with the same choice if it occurs multiple times in an inference rule
or in a sentence.

Finally, we use the entailment symbol T ⊢ J to express that the theory
T derives the judgement J .

Common structural rules The following structural rules are shared by
both calculi: rules for context formation and variable assumption

ax
() ctx

F-ctx
A col [Γ]

Γ, x ∈ A ctx
(with x fresh variable)

var
Γ, x ∈ A,∆ ctx

x ∈ A [Γ, x ∈ A,∆]

where () denotes the empty context; conversion rules

conv
a ∈ A A = B type

a ∈ B
eq-conv

a = b ∈ A A = B type

a = b ∈ B
rules stating that judgemental equalities of types and terms are equivalence
relations

type-ref
A type

A = A type
term-ref

a ∈ A
a = a ∈ A

type-sym
B = A type

A = B type
term-sym

a = b ∈ A
b = a ∈ A

type-tra
A = B type B = C type

A = C type
term-tra

a = b ∈ A b = c ∈ A
a = c ∈ A

and, finally, rules for inclusion between kinds of types

props-into-prop
φ props
φ prop

props-into-set
φ props
φ set

set-into-col
A set

A col
prop-into-col

φ prop

φ col

27

1.6.1 Minimal Type Theory mTT

The Minimal Type Theory mTT is a fully intensional dependent type theory
which can be thought as a common refinement of MLTT and CIC. It is a
version of the first-order fragment (meaning the fragment that includes only
one universe) of the former enriched with a primitive kind of propositions,
and a predicative version of the latter.

In the following, we present its main mechanism and peculiarities; its full
set of rules can be found in Appendix A.1.

Structural rules Compared with most dependent type theories, mTT
follows an unusual design in not assuming judgemental congruence rules for
its types and terms constructors. In particular, mTT does not assume the
so-called ξ-rule for lambda terms.

t(x) = s(x) ∈ B(x) [x ∈ A]
(λx ∈ A)t(x) = (λx ∈ A)s(x) ∈ (Πx ∈ A)B(x)

Without further means, the absence of these rules would break a fundamental
property of any type system, namely the preservation of judgemental equal-
ity under substitution. To compensate for that, mTT, additionally to the
common structural rules recalled above, postulates the following structural
rules of substitutions.

type-sub
C type [Γ, x ∈ A,∆] a = b ∈ A [Γ]

C[a/x] = C[b/x] type [Γ,∆[a/x]]

term-sub
c ∈ C [Γ, x ∈ A,∆] a = b ∈ A [Γ]

c[a/x] = c[b/x] ∈ C[a/x] [Γ,∆[a/x]]

Then, the types of mTT are constructed as follows.

Propositions Propositional constructors are those of predicate logic with
equality; namely, the falsum constant ⊥, the connectives ∧, ∨, ⇒, the quan-
tifiers ∀, ∃, and an equality predicate Id à la Leibniz. Their introduction
and elimination rules are a proof-relevant, computable version of the cor-
responding ones in natural deduction, where the only computation rule as-
sumed is β-equality. In particular, their elimination rules act only towards
non-dependent propositions; we report for example the elimination and com-

28

putation rules of the disjunction.

E-∨ χ prop p ∈ φ ∨ ψ t(x) ∈ χ [x ∈ φ] s(x) ∈ χ [x ∈ ψ]
El∨(p, (x).t, (x).s) ∈ χ

βC1-∨
χ prop φ ∨ ψ prop p ∈ φ t(x) ∈ χ [x ∈ φ] s(x) ∈ χ [x ∈ ψ]

El∨(inl∨(p), (x).t, (x).s) = t(p) ∈ χ

βC2-∨
χ prop φ ∨ ψ prop q ∈ ψ t(x) ∈ χ [x ∈ φ] s(x) ∈ χ [x ∈ ψ]

El∨(inr∨(q), (x).t, (x).s) = s(q) ∈ χ

The same goes for the intensional equality predicate, which, contrary to
Martin-Löf’s identity type, eliminates towards propositions not depending
on a proof-term.

E-Id
R(x, y) prop [x ∈ A, y ∈ A] p ∈ Id(A, a, b) t(x) ∈ R(x, x) [x ∈ A]

ElId(p, (x).t) ∈ R(a, b)

Intuitively, the rule above is saying that Id(A, x, y) is the smallest reflexive
relation on A. On the other hand, consider the following alternative elim-
ination rule which, acting towards predicates instead of relations, directly
displays the Leibniz characterisation of propositional equality.

E-Id′
P (x) prop [x ∈ A] p ∈ Id(A, a, b) q ∈ P (a)

ElId(p, q) ∈ P (b)

It is easy to check that the two elimination rules are mutually encodable: one
can encode E-Id through E-Id′ by fixing a term of the relation P (x) :≡ R(a, x);
in the other direction, one can use E-Id to encode E-Id′ by exploiting the
implication connective R(x, y) :≡ P (x)⇒ P (y).

Small propositions Small propositions are just those propositions in which
quantifications and propositional equalities have been applied only over sets.
Formally, they are generated using the following formation rules.

Fs-⊥ ⊥ props
Fs-Id

A set a ∈ A b ∈ A
Id(A, a, b) props

Fs-∧
φ props ψ props
φ ∧ ψ props

Fs-∨
φ props ψ props
φ ∨ ψ props

Fs-⇒
φ props ψ props
φ⇒ ψ props

Fs-∀
φ(x) props [x ∈ A] A set

(∀x ∈ A)φ(x) props
Fs-∃

φ(x) props [x ∈ A] A set

(∃x ∈ A)φ(x) props

29

Sets The sets of mTT are formed using the basic type formers of MLTT
presented with their usual formation, introduction, elimination, and compu-
tation rules; namely, we have the empty set N0, the singleton set N1, lists
List, disjoint sums +, dependent sums Σ, and dependent products Π. With
the exception of Π-types, the elimination of all the other inductive set con-
structors is towards dependent collections. It is important to notice that, as
it happens for propositions, the only computation rules assumed for those
constructors are β-equalities. The η-equalities of set constructors can be de-
rived only propositionally using the elimination principle of the corresponding
constructor; as an example, consider the case of dependent sum.

ElΣ(c, (x, y).id(⟨x, y⟩)) ∈ Id((Σx ∈ A)B(x) , c , ⟨π1(c), π2(c)⟩)

Collections Apart from sets and proposition (which are all collections), in
mTT there is only one basic constructor for collections, namely the universe
of small propositions Props. To simplify our meta-mathematical investiga-
tions, we consider its version à la Tarski (as opposed to its definition à la
Russell in [Mai09]) through the following rules.

F-Props
Props col

I-Props
φ props
φ̂ ∈ Props

E-Props
c ∈ Props
T(c) props

C-Props
φ props

T(φ̂) = φ props
η-Props

c ∈ Props

T̂(c) = c ∈ Props

Eq-Props
φ = ψ props

φ̂ = ψ̂ ∈ Props

Notice that thanks to the structural rule type-sub, also the following rule is
derivable.

Eq-E-Props
c = d ∈ Props

T(c) = T(d) props

In this work, we choose a homogeneous coding, contrary to the presentation
in [MM15] which instead postulates an ad hoc code for each propositional
constructor. The two presentations are essentially equivalent, but the one
used here is more suitable to possible extension with new propositional con-
structors such as those we will consider in Chapter 2 because we won’t need
to postulate a new introduction term for Props anytime we introduce a new
small propositional constructor. Collections are closed under dependent sum
Σ – this is vital to define collections by comprehension with propositions;
on the contrary, in general collections, are not closed under the other con-
structors listed above for sets; and, in particular, they are not closed under

30

dependent products Π. The only exception is that it is possible to form the
collection of small propositional operations taking arguments in sets, which
can be thought of as a universe of small predicates on that set.

F-ΠProps
A set

A→ Props col

Notice that, contrary to [Mai09], to simplify our meta-mathematical treat-
ment we do not present the above collections through dedicated rules: the
arrow→ refers as usual to the non-dependent version of Π, and the resulting
type automatically follows its rules.

1.6.2 Extensional Minimal Type Theory emTT

The Extensional Minimal Type Theory emTT is a fully extensional depen-
dent type theory obtained by enriching the first-order fragment of eMLTT
in [Mar84] with primitive propositions, a quotient set constructor and a pred-
icative powerset constructor; following the predicative terminology of MF,
the latter will be referred to as a power-collection constructor.

In the following, we present its main mechanism and peculiarities; its full
set of rules can be found in Appendix A.2.

Strctural rules Apart from the common structural rules shared withmTT,
the calculus emTT has also the following rules for embedding kind equalities

eq-props-into-prop
φ = ψ props
φ = ψ prop

eq-props-into-set
φ = ψ props
φ = ψ set

eq-set-into-col
A = B set

A = B col
eq-prop-into-col

φ = ψ prop

φ = ψ col

We remark that the structural rules type-sub and term-sub peculiar of mTT
will nevertheless be derivable in emTT.

Then, types of emTT are constructed as follows.

Propositions In emTT, proof-irrelevance is forced with the following rule.

prop-mono
φ prop p ∈ φ q ∈ φ

p = q ∈ φ

Moreover, a canonical proof-term true is introduced as a useful shorthand.

prop-true
φ prop p ∈ φ

true ∈ φ

31

We will often render the judgement true ∈ φ [Γ] as φ true [Γ]; moreover,
when we say that a certain proposition φ holds, can be derived, is satisfied
or similar, we mean that the judgement φ true [Γ] is derivable.

Propositional constructors are again those of predicate logic with equality,
formalised similarly as in mTT. Compare for example the elimination rule
of disjunction with the same rule reported above for mTT.

E-∨ ξ prop φ ∨ ψ true ξ true [x ∈ φ] ξ true [x ∈ ψ]
ξ true

The most important difference with respect tomTT is that emTT has an
extensional propositional equality; it is denoted as Eq(A, a, b) with a, b ∈ A
and its elimination rule is the so-called equality reflection.

E-Eq
Eq(A, a, b) true

a = b ∈ A

Moreover, notice that, since there is proof-irrelevance, propositional con-
structors do not need computation rules.

Small propositions Exactly as in mTT, small propositions are the ones
where equality and quantification are restricted to sets.

Sets The set constructors ofmTT (namely, the empty set N0, the singleton
set N1, lists List, disjoint sums +, dependent sums Σ, and dependent products
Π) are present also in emTT, with two main differences regarding their
equalities. Firstly, emTT assumes η-equality rule for dependent products

ηC-Π
f ∈ (Πx ∈ A)B(x)

(λx ∈ A)Ap(f, x) = f ∈ (Πx ∈ A)B(x)

As in mTT, the η-equality rules of the other set constructors can be de-
rived; now however, thanks to equality reflection, also the judgemental rule
is validated.

Secondly, for each type and term constructor, emTT assumes its con-
gruence rule; for example, in the case of dependent product there are the
following three rules

eq-F-Π

A set B(x) set [x ∈ A]
A′ set B′(x) set [x ∈ A′]

A = A′ set B(x) = B′(x) set [x ∈ A]
(Πx ∈ A)B(x) = (Πx ∈ A′)B′(x) set

32

ξeq-I-Π
b(x) = b′(x) ∈ B(x) [x ∈ A] (Πx ∈ A)B(x) col

(λx ∈ A)b(x) = (λx ∈ A)b′(x) ∈ (Πx ∈ A)B(x)

eq-E-Π
f = f ′ ∈ (Πx ∈ A)B(x) a = a′ ∈ A

Ap(f, a) = Ap(f ′, a′) ∈ B(a)

where the second one is the so-called ξ-equality rule; recall that the combi-
nation of the ξ and η congruence rules for the dependent product allows us
to derive the following rule

Ap(f, x) = Ap(g, x) ∈ B(x) [x ∈ A]
f = g ∈ (Πx ∈ A)B(x)

which, thanks to equality reflection, is equivalent to funext.
Finally, emTT has an additional set constructor that allows to form the

quotient of a set by a small equivalence relation (that is, an equivalence
relation which is a small proposition); its formation rule reads

F-Q

A set R(x, y) props [x ∈ A, y ∈ A]
R(x, x) true [x ∈ A]
R(y, x) true [x, y ∈ A, p ∈ R(x, y)]
R(x, z) true [x, y, z ∈ A, p ∈ R(x, y), q ∈ R(y, z)]

A/R set

The canonical elements of a quotient set are equivalence classes represented
by an explicit element of A.

I-Q
A/R set a ∈ A

[a] ∈ A/R

The congruence rule for the introduction term of quotients is stronger than
the usual pattern followed by other constructors.

eq-I-Q
A/R set a ∈ A b ∈ A R(a, b) true

[a] = [b] ∈ A/R

(notice that in [Mai09] the above rule is called eq-Q, and a weaker eq-I-Q
is also stated, although superfluous). In Proposition 1.7.8, quotients will be
shown to be effective, in the sense that the following derived rule, inverse to
eq-I-Q, is derivable.

eff
[a] = [b] ∈ A/R
R(a, b) true

33

Finally, the quotient elimination and computation rules state that we can
eliminate whenever the operation involved does not depend on the choice of
representatives.

E-Q

M(z) col [z ∈ A/R]
c ∈ A/R m(x) ∈M([x]) [x ∈ A]
m(x) = m(y) ∈M([x]) [x ∈ A, y ∈ A, p ∈ R(x, y)]

ElQ(c, (x).m) ∈M(c)

βC-Q

M(z) col [z ∈ A/R]
a ∈ A m(x) ∈M([x]) [x ∈ A]
m(x) = m(y) ∈M([x]) [x ∈ A, y ∈ A, p ∈ R(x, y)]

ElQ([a], (x).m) = m(a) ∈M([a])

Notice that for the premises m(x) = m(y) ∈ M([x]) above to typecheck we
need the congruence rule eq-I-Q.

Collections Apart from sets and proposition (which are all collections), in
emTT there is only one basic constructor for collections, the power collection
of the singleton P(1). It is also known as the collection of small propositions
up to equiprovability ; indeed, in the quotient model in [Mai09], the collection
P(1) is interpreted in the intensional level as the setoid (Props,⇔). The fact
that its intended interpretation is that of a quotient is evident also by the
following rules, which closely match those of the quotient set constructor.

I-P(1) φ props
[φ] ∈ P(1)

eq-I-P(1) φ⇔ ψ true

[φ] = [ψ] ∈ P(1)
eff-P(1)[φ] = [ψ] ∈ P(1)

φ⇔ ψ true

One peculiarity of P(1) is that, although it is a collection, its equality is
postulated to be a small proposition.

Fs-Eq-P(1)
U ∈ P(1) V ∈ P(1)
Eq(P(1), U, V) props

Thanks to that, we have a canonical way to pick a representative from the
elements U ∈ P(1) thought of as equivalence classes of equiprovable small
propositions; we define it through the following shorthand

Dc(U) :≡ Eq(P(1), U, [⊤]) props

observing that, thanks to the rules eq-I-P(1) and eff-P(1) above, it satisfies
the following derived rule.

φ props
Dc([φ])⇔ φ true

34

Finally, we postulate the following η-equality, which will be vital to derive
subset extensionality in Subsection 1.7.9.

η-P(1) U ∈ P(1)
[Dc(U)] = U ∈ P(1)

In emTT, collections are closed under dependent sum Σ, and under taking
the non-dependent function space of a set A towards the collection P(1).

F-ΠP(1) A set

A→ P(1) col

This last rule is particularly important, since A→ P(1) will be interpreted as
the power-collection of A, which will be throughout shorthanded as follows.

P(A) :≡ A→ P(1)

1.7 What is like to do mathematics in it?

The it in the title of this section should refer to the extensional level emTT,
since, as we argued in Section 1.4, it is the right level of the Minimalist
Foundation for developing mathematics. In the following, we collect some
basic results useful both for working within emTT, and for reasoning about
its meta-mathematics; at the same time, we hope that this will give the
reader an opportunity to get acquainted with the peculiarities of the system
through hands-on examples.

1.7.1 Different notions of function

Recall that in emTT, for two sets A and B, and a relation R(x, y) prop [x ∈
A, y ∈ B] between them, the Axiom of Unique Choice AC!A,B, and there-
fore the Axiom of Choice ACA,B do not hold in general [Mai17] (see also
Proposition 1.7.7 for another small example).

(∀x ∈ A)(∃y ∈ B)R(x, y)⇒ (∃f ∈ A→ B)(∀x ∈ A)R(x, f(x)) (ACA,B)

(∀x ∈ A)(∃!y ∈ B)R(x, y)⇒ (∃f ∈ A→ B)(∀x ∈ A)R(x, f(x)) (AC!A,B)

One of the most important distinctions enforced by the absence of unique
choice is the one between functions as type-theoretic functions, which we will
call operations, that is terms of the function space A→ B, and functions as
functional relations, that is total and singled-value relations on A×B.

35

In emTT, each operation f ∈ A → B induces a functional relation by
taking its graph

f(x) =B y props [x ∈ A, y ∈ B]

However, due to the failure of AC!, not every functional relation can be turned
into an operation. Another key difference is that, given two sets A and B,
while operations form the set A → B, most of the time small functional
relations form a collection.

FunRel(A,B) :≡ (ΣR ∈ P(A×B))(∀x ∈ A)(∃!y ∈ B)R(⟨x, y⟩) col

Even worse, since there is no universe of arbitrary propositions, arbitrary
functional relations do not have a type at all in emTT.

Finally, whenever A and B are not necessarily sets, it is useful to consider
functional terms between them, that is terms t(x) ∈ B [x ∈ A] of type B
defined in the context extended by A. Clearly, operations f ∈ A → B can
be thought as functional terms Ap(f, x) ∈ B [x ∈ A], and, whenever the
function space A→ B exists, there is an obvious one-to-one correspondence
up to judgemental equality between the two notions coincide.

For more analyses of such pivotal distinction, see [MS05] and Sections
1.1.6, 2.1.3, and 2.2.2 of [Sam24]. Throughout this work, we will give greater
consideration to the notion of operation and functional terms; starting with
the following definitions.

Definition 1.7.2. Let A and B be two collections, and t(x) ∈ B [x ∈ A] a
functional term between them.

We say that t is injective if it satisfies

(∀x, y ∈ A)(t(x) =B t(y)⇒ x =A y)

surjective if it satisfies

(∀y ∈ B)(∃x ∈ A)t(x) =B y

and bijective if it is both injective and surjective, namely, if it satisfies

(∀y ∈ B)(∃!x ∈ A)t(x) =B y

where we have used the shorthand

(∃!x ∈ A)φ(x) :≡ (∃x ∈ A)φ(x) ∧ (∀x, x′ ∈ A)(φ(x) ∧ φ(x′)⇒ x =A x
′)

In the latter case we say that the sets A and B are in bijection.

36

Moreover, we say that t is an isomorphism, or invertible, if there exists
another functional term t−1(y) ∈ A [y ∈ B] such that

(∀x ∈ A)t−1(t(x)) =A x ∧ (∀y ∈ B)t(t−1(y)) =B y

in this case, we say that A and B are isomorphic.
An operation will be called injective (resp. surjective, bijective, invertible)

if it is injective (surjective, bijective, invertible) as a functional term.
Finally, if A and B are sets, we define the following small proposition

shortened as A ∼= B expressing internally that A and B are isomorphic.

(∃f ∈ A→ B)(∃f−1 ∈ B → A)(f−1 ◦ f =A→B idA ∧ f ◦ f−1 =B→A idB)

where identities id(−) and compositions (−) ◦ (−) for operations are defined
in the usual way.

Notice that for a functional term being invertible implies being bijective,
but asking in general for the reverse direction is equivalent to AC!.

The notion of isomorphic collections is vital also in the meta-mathematical
study of MF; in particular, we will often employ the following definition.

Definition 1.7.3. We say that a collection is proper if it is not isomorphic
to any set.

As expected examples, we have the following.

Proposition 1.7.4. The collections P(1) and P(N) are proper.

Proof. If P(1) were isomorphic to a set, then P(N) would be too. However,
in that case we could interpret full intuitionistic second-order arithmetic in
emTT; but this is a contradiction since we know that the proof-theoretic
strength of emTT is bounded by ÎD1 as shown in [IMMS18].

As non-examples we can just consider sets, or trivialities such as P(N)×N0

or P(N0), which cannot be proved to be sets but are nevertheless isomorphic
to the empty set N0 and the singleton set N1, respectively.

1.7.5 Interaction between logic and type theory

Recall that, in the Minimalist Foundation logic is part of the type theory,
and thanks to equality, comprehensions, quotients, and power-collections,
they are highly intertwined. We will therefore derive some basic properties
of this interaction.

37

For the next proposition we define the following. For a collection A col,
let Inh(A) :≡ (∃x ∈ A)⊤ prop be the proposition stating that A is inhabited;
define the set of booleans Bool :≡ N1 + N1 set, with canonical elements
0Bool :≡ inl(⋆) and 1Bool :≡ inr(⋆) (we will often omit their subscripts when it
is clear from the context).

Proposition 1.7.6 (Logical equivalences). The following are true in emTT,
where φ and ψ denote two propositions defined in the same context and z
denotes a fresh variable.

φ⇔ Inh(φ)

⊥ ⇔ Inh(N0)

⊤ ∼= N1

φ ∧ ψ ⇔ (∃z ∈ φ)ψ
φ ∧ ψ is isomorphic to φ× ψ
φ ∨ ψ ⇔ Inh(φ+ ψ) (with φ and ψ props)

φ ∨ ψ ⇔ (∃b ∈ Bool)((b =Bool 0⇒ φ) ∧ (b =Bool 1⇒ ψ))

(φ⇒ ψ) ∼= φ→ ψ (with φ and ψ props)

(φ⇒ ψ)⇔ (∀z ∈ φ)ψ
(φ⇔ ψ)⇔ (φ ∼= ψ) (with φ and ψ props)

Moreover, for a dependent proposition φ(x) prop [x ∈ A] the following hold.

(∃x ∈ A)φ(x)⇔ Inh((Σx ∈ A)φ(x))
(∀x ∈ A)φ(x) ∼= (Πx ∈ A)φ(x) (with φ props and A set)

Proof. The condition of smallness required for φ and ψ ensures well-typing
when set constructors +, Π, and ∼= are used in a statement.

All points are trivially checked. It is just a matter of playing around with
the various elimination principles.

In the proposition above, we could not have hoped for a full isomorphism
⊥ ∼= N0, as the next proposition shows.

Proposition 1.7.7. The falsum constant ⊥ and the empty set N0 are not
isomorphic.

Proof. We show that there are no operations from ⊥ to N0, that is no terms
of type ⊥ → N0 (in the empty context). The proof adapts the interpretation
already used in [Smi88] to prove the independence of Peano’s fourth axiom
from Martin-Löf’s type theory without universes. Namely, we interpret each

38

type as a boolean value; in particular, we interpret each non-propositional
constructor as in the original interpretation; while all the propositional con-
structors and the collection P(1) are interpreted as 1. Since propositions
eliminates only towards propositions, it is easy to prove in the same way as
in [Smi88] that if A is a closed type such that emTT ⊢ a ∈ A for some term
a, then A gets interpreted as 1; however, the type ⊥ → N0 is interpreted as
1→ 0 ≡ 0.

It is interesting to notice that, as it happens for Peano’s fourth axiom
in Martin-Löf’s type theory, the additional presence of a type universe with
codes for N0 and N1 is enough to derive ⊥ ∼= N0.

The following proposition is a crucial one, since it characterises the equal-
ity of type constructors.

Proposition 1.7.8 (Equality of type constructors). The following equiva-
lences hold in emTT (where the free variables in the left hand side of each
equivalence are implicitly assumed to be in the obvious context):

1. x =N0 y ⇔ ⊥

2. x =N1 y ⇔ ⊤

3. [a] =A/R [b]⇔ R(a, b)

4. l =List(A) l
′ ⇔

⊤ if l = l′ = ϵ

s =List(A) s
′ ∧ a =A a

′ if l = cons(s, a) and l′ = cons(s′, a′)

⊥ otherwise

5. z =A+B z′ ⇔

x =A x

′ if z = inl(x) and z′ = inl(x′)

y =B y′ if z = inr(y) and z′ = inr(y′)

⊥ otherwise

6. z =(Σx∈A)B(x) w ⇔ (∃p ∈ π1(z) =A π1(w))π2(z) =B(π1(z)) π2(w)

7. f =(Πx∈A)B(x) g ⇔ (∀x ∈ A)f(x) =B(x) g(x)

8. U =P(1) V ⇔ (Dc(U)⇔ Dc(V))

9. p =φ q ⇔ ⊤ if φ prop

Proof. 1. Trivial, using the elimination principle of N0 towards the equiv-
alence itself; in fact, the choice of the falsum constant at the right hand
side of the equivalence is purely conventional.

39

2. This is the easily derivable η-equality for the singleton set.

3. One direction is just the application of the congruence rule for equiv-
alence classes eq-I-Q. The other direction holds because in emTT
quotients are effective, in the sense that the following rule is derivable.

eff
a ∈ A b ∈ A [a] = [b] ∈ A/R

R(a, b) true

The presentation in [Mai09] of emTT postulates the above rule, to-
gether with effectiveness for the collection P(1)

eff-P(1) [φ] = [ψ] ∈ P(1)
φ⇔ ψ true

however, we can actually derive the former using the latter. Indeed,
suppose to have [a] = [b] ∈ A/R for some a, b ∈ A; plugging them in
the functional term

ElQ(z, (x).[R(a, x)]) ∈ P(1) [z ∈ A/R]

results in the equality [R(a, a)] = [R(a, b)] ∈ P(1). By effectivity of
P(1) we conclude R(a, a)⇔ R(a, b), and thus R(a, b) by the reflexivity
of R.

4. The proposition defined by cases on the right side can be formally
defined by recursion using the elimination principle of lists towards
P(1), together with coding and decoding functions (here the smallness
of propositions is vital).

Dc(ElList(l

, ElList(l
′, [⊤], [⊥])

, (s, a).ElList(l
′, [⊥], (s′, a′).[s =List(A) s

′ ∧ a =A a
′])))

The equivalence can then be reduced by induction (again with list
elimination) to the following ones:

• ϵ =List(A) ϵ⇔ ⊤
• s =List(A) s

′ ∧ a =A a
′ ⇔ cons(s, a) =List(A) cons(s

′, a′)

• ϵ =List(A) cons(s, a)⇔ ⊥

The first two are trivially checked using congruence rules. For the
third one, we can prove, using the same trick of point 3, that list term
constructors are disjoint, meaning that the following rule is derivable.

l ∈ List(A) a ∈ A cons(l, a) = ϵ ∈ List(A)

⊥ true

40

5. Analogous to point 4. In particular, the cases on the right side can be
formally defined using the elimination of sum.

Dc(El+(z

, (x).El+(z, (x
′).[x =A x

′], [⊥])
, (y).El+(z, [⊥], (y′).[y =B y′])))

Moreover, we can also prove that the term constructors of the disjoint
sum are, indeed, disjoint.

a ∈ A b ∈ B inl(a) = inr(b) ∈ A+B

⊥ true

6. The equivalence is easily proven using congruence rules, and the deriv-
able η-equality for dependent sums. However, it is important to notice
that the right hand side of the equivalence could not have been written
as the conjuction π1(z) =A π1(w) ∧ π2(z) =B(π1(z)) π2(w), which is
ill-formed because the judgement π2(w) ∈ B(π1(z)) cannot be derived
without assuming π1(z) =A π1(w) first.

7. This is function extensionality, which is proven as usual with equal-
ity reflection, and the rules of ξ-equality and η-equality for dependent
function spaces.

8. Easily proven using the congruence rule and the η-equality of P(1).

9. Trivial, by the rule prop-mono.

1.7.9 Basic set theory

We are now in the position to show through examples how the development
of some basic set theory can be performed smoothly in emTT.

Local (sub)set theory As it happens in the internal language of a topos,
we can develop local (sub)set theory relative to a given set A. We use the
shorthand

a ε V :≡ Dc(Ap(V, a)) props

to denote the (propositional) relation of membership between terms a ∈
A and subsets V ∈ P(A) ≡ A → P(1). As an immediate corollary of
Proposition 1.7.8, our setting validates subset extensionality

U =P(A) V ⇔ (∀x ∈ A)(x εU ⇔ y εU)

41

Moreover, we can recover the usual set-builder notation from axiomatic set
theory by defining the subset obtained by comprehension with a predicate
φ(x) props [x ∈ A] as follows

{x ∈ A |φ(x)} :≡ (λx ∈ A)[φ(x)] ∈ P(A)

Notice that it satisfies, for each a ∈ A, the usual comprehension axiom

a ε {x ∈ A |φ(x)} ⇔ φ(a)

We will then use the following set-theoretic shorthands.

∅ :≡ {x ∈ A | ⊥}
{a1, . . . , an} :≡ {x ∈ A |x =A a1 ∨ · · · ∨ x =A an}

A :≡ {x ∈ A | ⊤}
U ∩ V :≡ {x ∈ A |x εU ∧ x ε V }
U ∪ V :≡ {x ∈ A |x εU ∨ x ε V }

U ∁ :≡ {x ∈ A | ¬x εU}

Finally, given V ∈ P(A), and φ(x) prop [x ∈ A] we define

(∀x ε V)φ(x) :≡ (∀x ∈ A)(x ε V ⇒ φ(x)) prop

(∃x ε V)φ(x) :≡ (∃x ∈ A)(x ε V ∧ φ(x)) prop

Notice that if φ is a small proposition, then also the above are.

Number sets The natural numbers are coded as lists over the singleton set
N :≡ List(N1). The number zero, the successor operation, and the recursion
elimination principles are coded as usual.

zero :≡ ϵ

succ(n) :≡ cons(n, ⋆)

ElN(n, b, (x, y).r(x, y)) :≡ ElList(n, b, (x, y, z).r(x, z))

Notice that, as an instance of list disjointness (see Proposition 1.7.8), the
fourth Peano axiom ¬ succ(zero) =N zero is valid.

The set of integers is defined as a quotient Z :≡ (N × N)/∼Z, where
⟨a, b⟩ ∼Z ⟨c, d⟩ :≡ a+ d =N b+ c.

Analogously, the set of rational numbers is defined as Q :≡ (Z×Z∗)/∼Q,
where Z∗ :≡ (Σz ∈ Z)¬z =Z 0Z is the set of non-zero integers defined by
comprehension, and ⟨a, b, p⟩ ∼Q ⟨c, d, q⟩ :≡ a · d =Z b · c.

42

Observe that all the number sets N, Z, and Q defined until now are
indeed sets in the formal sense of emTT. Regarding real numbers, they
can be defined à la Cauchy Rc, using sequences of rational numbers, or à la
Dedekind Rd, using his cuts. The former is the method pursued by Bishop
in [MS23b] for his constructive real numbers, which will lead to an effective
notion of real number, and the collection of all of them will form a set; the
latter is a generalisation of the former closer to the spirit of the continuum
proposed by Weyl, where real numbers form a proper collection (see the
discussion at Subsection 1.2.3).

Real numbers à la Cauchy are defined using effective sequences or ratio-
nals, that is operations in N→ Q as follow.

Rc :≡ ((Σf ∈ N→ Q)Reg(f))/∼Reg

where Reg(f) is the predicate asserting that a sequence f ∈ N→ Q is regular

(∀n,m ∈ N+)|f(n)− f(m)| ≤Q n
−1 +m−1

while f ∼Reg g is the equivalence relation

(∀n ∈ N+)|f(n)− g(n)| ≤Q n
−1 + n−1

Real numbers à la Dedekind are defined using the collection of subsets of
rational numbers P(Q). For simplicity we report their definition using lower
Dedekind cuts.

Rd :≡ (ΣA ∈ P(Q))((∃q ∈ Q)q εA

∧ (∃q ∈ Q)¬q εA
∧ (∀q εA)(∀r ∈ Q)(r < q ⇒ r εA)

∧ (∀q εA)(∃r εA)q < r)

In this way, real numbers form a collection, which, in Theorem 4.3.2, we will
prove proper.

Finally, we can define an injective functional relation from Cauchy reals
Rc to Dedekind reals Rd by associating to each regular sequence f ∈ N→ Q
the following Dedekind cut.

{q ∈ Q | (∃m ∈ N)(∀n ∈ N)(n > m⇒ q < f(n))}

Image, inverse image, coimage Given a function f ∈ A → B between
sets, we define its image as follows.

Imf set

Imf :≡ (Σy ∈ B)(∃x ∈ A)f(x) =B y

43

Its elements will be of the form ⟨b, true⟩ for some b ∈ B, so they do not
contain any hint to what a possible a ∈ A in its inverse image could be.

Analogously, the inverse image on an element of B is defined as the
following dependent set.

f−1(y) set [y ∈ B]

f−1(y) :≡ (Σx ∈ A)f(x) =B y

Finally, the coimage Coimf of f is defined as the quotient A/Kerf , where
the kernel Kerf is the equivalence relation f(x) =B f(y). Moreover, notice
that we always have a canonical operation

uf ∈ Coimf → Imf

uf ([x]) :≡ ⟨f(x), true⟩

formally defined as (λz ∈ Coimf)ElQ(z, (x).⟨f(x), true⟩). It can be easily
shown that uf is bijective, but in general it is not possible to write an inverse
function, since that would require to explicitly know, for each b ∈ B, an
element in its inverse image.

Relation closures Recall that the reflexive (resp. symmetric, transitive,
equivalence) closure of a relation R(x, y) prop [x, y ∈ A] is the smallest reflex-
ive (resp. symmetric, transitive, equivalence) relation S(x, y) prop [x, y ∈ A]
such that

R(x, y)⇒ S(x, y) true [x, y ∈ A]

The reflexive and symmetric closures can always be constructed asR(x, y)∨
x =A y and R(x, y) ∨ R(y, x), respectively. Moreover, if A is a set, we can
construct the transitive closure R+ of R by stating that, for two elements
a, b ∈ A, the relation R+(a, b) holds whenever there exist x0, . . . , xn ∈ A
such that x0 =A a, xn =A b, and R(xi, xi+1) for each i = 0, . . . , n − 1. This
construction can be formalised using the list constructor, and this is why we
need to require A to be a set.

By successively applying all the above closure constructions we obtain
the equivalence closure of a relation. Notice that, whenever the relation R is
small, then also its equivalence closure is.

1.7.10 A categorical account

The question what is like doing mathematics in a certain foundation? can
be phrased formally with the language of category theory. In particular, we
can ask what the category of sets and functions Set looks like assuming such

44

foundation. In the case at present, the objects of Set are the (closed) sets
of emTT, considered up to judgemental equality; an arrow t(x) : A → B
from an object A to an object B is a functional term t(x) ∈ B [x ∈ A], again
considered up to judgemental equality.

The following results elaborate on the categorical ones of [Mai09] (in
particular Theorem 4.20 thereof), [MPR23] and [Mai05] in the case of emTT-
sets.

Firstly, we notice that, as expected, there is a tight link between type-
theoretical properties of operations and categorical properties of arrows.

Definition 1.7.11. A comprehension map in Set is an arrow isomorphic to
one of the form

π1(z) : (Σx ∈ A)φ(x)→ A

for a predicate φ(x) props [x ∈ A].
A quotient map in Set is an arrow isomorphic to one of the form

[x] : A→ A/R

for an equivalence relation R(x, y) props [x, y ∈ A].

Proposition 1.7.12. Let f : A→ B be an arrow in Set.

1. f is an epimorphism if and only if it is a surjective operation;

2. f is a regular epimorphism if and only if it is a quotient map;

3. f is an monomorphism if and only if it is an injective operation;

4. f is a strong monomorphism if and only if it is a comprehension map.

5. f is an isomorphism (in the sense of category theory) if and only if it
is an isomorphism as an operation.

Proof. 1. Assume f is an epimorphism. Consider the relation Rf on the
set B + B obtained as the reflexive and symmetric closure of the fol-
lowing proposition.

(∃x ∈ A)(z =B+B inl(f(x)) ∧ w =B+B inr(f(x))) with z, w ∈ B +B

It is easy to check that Rf is also transitive, and thus an equivalence
relation. It is immediate to see that the following diagram commutes.

A B (B +B)/Rf
f(x) [inl(y)]

[inr(y)]

45

Since by hypothesis f is an epimorphism, we deduce

(∀y ∈ B)[inl(y)] =(B+B)/Rf
[inr(y)]

which is equivalent to (∀y ∈ B)(∃x ∈ A)y =B f(x), which precisely
expresses that f is surjective.

Conversely, assume (∀y ∈ B)(∃x ∈ A)y =B f(x), and suppose to have
a commutative diagram of the following form.

A B C
f(x) g(x)

h(x)

Commutativity of the above diagrams reads (∀x ∈ A)f(t(x)) =B g(t(x));
with the assumption of surjectivity, we can derive (∀y ∈ B)f(y) =C

g(y), which amounts to the equality of the parallel arrows.

2. The fact that each coequaliser is isomorphic to a quotient map is
implied by the construction of coequaliser in Set shown next in the
proof of Theorem 1.7.17. Conversely, notice that each quotient map
[−] : A → A/R is the coequaliser of the pair π1, π1 ◦ π2 : (Σx ∈
A)(Σy ∈ A)R(x, y)→ A.

3. Assume f is a monomorphism, and consider the following diagram.

(Σx ∈ A)(Σy ∈ A)f(x) =B f(y) A B
π1◦π2

π1 f(x)

Clearly, it is commutative; since f is a monomorphism, the two parallel
arrows are equal, which amounts to the statement of injectivity.

Conversely, assume f is injective and suppose to have a commutative
diagram of the following form.

C A B
h(x)

g(x) f(x)

Commutativity implies (∀x ∈ C)f(g(x)) =B f(h(x)), and by injectivity
we deduce (∀x ∈ C)f(x) =A g(x), which amounts to the equality of
the parallel arrows.

4. The fact that each equaliser is isomorphic to a comprehension map is
implied by the construction of equalisers in Set shown next in the proof

46

of Theorem 1.7.17. Conversely, notice that each comprehension map
π1 : (Σx ∈ A)φ(x)→ A is the equaliser of the following pair of arrows

A (A+ A)/Rφ

[inl(x)]

[inr(x)]

where Rφ is the equivalence relation on A+A obtained as the reflexive
and symmetric closure (which automatically is also transitive) of the
following proposition.

(∃x ∈ A)(φ(x) ∧ z =A+A inl(x) ∧ w =A+A inr(x)) with z, w ∈ A+ A

5. Trivial, by definition of inverse operation.

Corollary 1.7.13. The category Set is not balanced.

Proof. If it were, by the above characterisation bijective operations would
coincide with invertible ones, but we know this is not the case since that
would coincide with AC!, which we know does not hold by [Mai17].

The following definitions are justified in light of Proposition 1.7.12, which
identifies the underlying logic of Set with that of regular monomorphisms as
opposed to e.g. topos theory, in which logic is interpreted through monomor-
phisms.

Definition 1.7.14. Let C be a finitely complete category with finite coprod-
ucts. We say that C has regularly disjoint sums if, for each pair of objects
A,B ∈ C the following hold:

• the injections ι1 : A→ A+B and ι2 : B → A+B are monomorphisms;

• the unique arrow out of the initial object towards the equaliser of the
pair ι1 ◦ π1, ι2 ◦ π2 : A×B → A+B is an epimorphism; pictorially

0 E A×B A+B
!E

ι1◦π1

ι2◦π2

Definition 1.7.15. Let C be a finitely complete category. A regular congru-
ence in C is a congruence which is also a regular monomorphism.

Remark 1.7.16. Observe that, whenever the category C is balanced and
has a strict initial object, Definition 1.7.14 coincides with the usual ones of
disjoint coproducts.

47

Theorem 1.7.17. The category Set is finitely complete, finitely cocomplete,
and locally cartesian closed; moreover, it has a natural number object, regu-
larly disjoint sums, and effective quotients of regular congruences.

Proof. In the following diagrams, a dashed line will denote the unique map
induced by an universal property. Unless otherwise stated, uniqueness is
proven using the η-equality or the elimination rule of the corresponding con-
structor.

Terminal object

X N1
⋆

Binary products

A

X A×B

B

f(x)

g(x)

⟨f(x),g(x)⟩
π1(z)

π2(z)

equalisers

(Σx ∈ A)f(x) =B g(x) A B

X

π1(z)
f(x)

g(x)

h(x)
⟨h(x),true⟩

Uniqueness is proven also thanks to proof-irrelevance i.e. the rule prop-mono.

Initial object

N0 X
ElN0

(z)

Regular disjoint sums

A

A+B X

B

inl(x)

f(x)

El+(z,(x).f(x),(x).g(x))

inr(x)

g(x)

48

Sum disjointness is easily proved using its type-theoretic counterpart of the
same name.

Effective quotients of regular congruences
Thanks to point 2 of Proposition 1.7.12, we know that each regular con-

gruence in Set is (isomorphic to one) of the following form

(Σx ∈ A)(Σy ∈ A)R(x, y) A
π1

π1◦π2

where R(x, y) props [x ∈ A, y ∈ A] is an equivalence relation (in the type-
theoretic sense).

It is easy to see that the quotient map [x] : A → A/R is the coequaliser
of the above diagram, and that (Σx ∈ A)(Σy ∈ A)R(x, y) is its kernel pair,
using in particular the type-theoretic rule eff of effectivity for the quotients.

Coequalisers

A B B/Rf,g

X

f(x)

g(x)

[x]

h(x)
ElQ(z,(x).h(x))

where Rf,g is defined as the equivalence closure of the following proposition.

(∃z ∈ A)(f(z) =B x ∧ g(z) =B y) prop [x ∈ B, y ∈ B]

To show that the arrow induced by the universal property is well-defined we
need to prove h(x) =X h(y) for each x, y ∈ B such that Rf,g(x, y); notice
that h(x) =X h(y) is an equivalence relation on B; moreover, thanks to the
fact that h(f(x)) =X h(g(x)) for any x ∈ A, one has

(∃z ∈ A)(f(z) =B x ∧ g(z) =B y)⇒ h(x) =X h(y)

By definition of equivalence closure we conclude thatRf,g(x, y) implies h(x) =X

h(y).

Right adjoints to pullback functors Given an arrow f : A→ B, the right
adjoint Πf : Set/A → Set/B to the pullback functor f ∗ is defined as in
[See84; Law69]; the definition on objects reads

Πf (X
g−→ A) :≡ π1(z) : (Σy ∈ B)(Πx ∈ f−1(y))g−1(π1(x))→ B

49

Natural number object

N1 N N

X X

zero

b

succ(x)

ElN(x,b,(x,y).r(y))

r

Recall that each finitely complete, finitely cocomplete category enjoys two
orthogonal factorisation systems given by the pairs of morphism classes (Reg-
ular Epimorphisms, Monomorphisms) and (Epimorphisms, Regular Monomor-
phisms). Moreover, they form a double factorization system in the sense of
[PATW02], meaning that each arrow factors in an essentially unique way as
a regular epimorphism, followed by a morphism that is both an epimorphism
and a monomorphism, followed by a regular monomorphism.

In the case of Set, each arrow f : A→ B factors uniquely as follows

A B

Coimf Imf

f

[−]

uf

π1

where Coimf , uf , and Imf are defined as in Subsection 1.7.9.

Remark 1.7.18. As already pointed out in Remark 4.41 of [Mai09], the cat-
egory Q(mTT) (Definition 4.1 of [Mai09]) representing the quotient model in
which emTT is interpreted does not have the latter as its internal language.
In categorical terms, we can say that the category Set studied in this section
is not equivalent to Q(mTT). Notably, Set does not seem to have enough
projectives, whereas Q(mTT) does.

1.8 Compatibility results

In this section, we collect the results inspired by the ideas exposed in [Mai19;
Mai20] which formally justify the adjective minimal in the names of both
calculi mTT and emTT, as well as the adjective minimalist in that of MF.

For brevity and to help intuition and promote conceptual significance, in
the following statements, we refer to the notions of compatible theory and
compatible extension discussed in Section 1.3, and we will implicitly think
of them as relative to the intended interpretations of HAω into the theories
in question. As mentioned there, those are not precise definitions but more

50

blueprints which can be followed to obtain, in each specific case, a fully formal
statement. Example of those unfolded statement can be found for example
in [CM22] and [MS22].

Finally, recall that the idea in all the following proofs is always to define
an interpretation formalising the specialisation of the entities distinction de-
scribed for each theory in Section 1.5.

In the following statement, let ML1 denote the version of MLTT in
[NPS90] with type constructors N0, N1, +, List, Σ, Π, Martin-Löf’s iden-
tity type Id, and one universe of small types U0 closed under all the other
constructors.

Theorem 1.8.1. ML1 is a compatible extension of mTT up to equivalence
of theories.

Proof. Consider the extension ofmTT obtained by first enforcing the proposition-
as-type paradigm through the rules

A set

A props

A col

A prop

and then by adding all the rules of ML1 that are not already present in
mTT, namely: congruence rules for type and term constructors; rules for
upgrading the Leibniz identity type to Martin-Löf’s identity type; and rules
closing collections over all type constructors.

Up to renaming, the theory obtained in this way coincide with ML1: it is
enough to rename in the pre-syntax logical symbols under the Curry-Howard
isomorphism, and the universe of small propositions Props as the universe of
small types U0.

Finally, checking compatibility is straightforward, since Martin-Löf’s type
theory natively interprets logic under the proposition-as-type paradigm.

In the following statement, let CCML denote the Calculus of Construc-
tions without universes of types (apart from the impredicative universe of
propositions) defined in [CH88], extended with rules for the inductive type
constructors N0, N1, +, List, and Σ from the first-order fragment of MLTT
(notice that the resulting theory is a rather small fragment of the Calculus
of Inductive Constructions CIC in [CP90]).

Theorem 1.8.2. CCML, and thus CIC, are compatible extensions of mTT
up to equivalence of theories.

Proof. Consider the impredicative extension of mTT obtained by extension
with the congruence rules for types and terms and with the following resizing

51

rules collapsing the predicative distinction between effective and open-ended
types.

col-into-set
A col

A set
prop-into-props

φ prop

φ props

As consequences of the distinction between sets and collections, as well as
that between propositions and small propositions, disappearing we have the
following: the universe of small proposition Props can be interpreted as the
impredicative universe of (all) propositions Prop; all types are closed under
all set constructors, as in CCML (in particular, the universal quantifier ∀
and the dependent function space Π become just two different names for the
only Π constructor of CCML). Thus, the only calculations to be made to
check that the theory obtained is equivalent to CCML are those to verify
that propositional constructors of mTT are encodable in CCML, and this is
easily checked using their standard impredicative encodings; in particular, it
works for propositional equality because in mTT is defined à la Leibniz.

Compatibility is straightforward since the way in which the Calculus of
Constructions interprets HAω, which does not involve higher order entities,
is identical to that of mTT.

In the following statement, let TArithTopos be the extension of the internal
language of a topos TTopos defined in [Mai05] with the inductive list construc-
tor List of MLTT (in light of the results of [Mai05], the calculus TArithTopos

provides the internal language of toposes equipped with a natural number
object).

Theorem 1.8.3. TArithTopos is a compatible extension of emTT up to equiv-
alence of theories.

Proof. Consider the extension of emTT with rules for enforcing impredica-
tivity, and with a rule making propositions coincide with mono-types, that
is types with at most one element.

A col

A set

A prop

A props

x = y ∈ A col [x ∈ A, y ∈ A]
A prop

To show that the theory obtained in this way is equivalent to TArithTopos,
we first interpret P(1) as the type classifier Ω; then, we need to check that
TArithTopos encodes the propositional constructors (except that of extensional
propositional equality, which is already present) and the set constructors of
the empty set, the disjoint sum, and the quotient set. For propositional con-
structors we can use the standard impredicative encodings; for the mentioned

52

set constructors we can use the following encodings.

N0 :≡ (ΠU ∈ P(1))T(U)
A+B :≡ (ΣU ∈ P(A))(ΣV ∈ P(B))((∃x ∈ A)(U =P(A) {x} ∧ V =P(B) ∅)

∨ (∃y ∈ B)(U =P(A) ∅ ∧ V =P(B) {y}))
A/R :≡ (ΣU ∈ P(A))(∃x ∈ A)U =P(A) {y ∈ A |R(x, y)}

To check that the above three definitions correctly interprets the correspond-
ing constructor, it is vital to use the axiom of unique choice granted by the
identification of propositions as mono-types.

Compatibility is straightforward since the way in which a topos with
a natural number objects interprets the logic of HAω is exactly through
monomorphisms, which are reflected in its internal language by mono-types.

Theorem 1.8.4. CZF, and thus IZF and ZF, are compatible extensions of
emTT up to equivalence of theories.

Proof. Proven in [MS22].

Theorem 1.8.5. Both mTT and emTT are compatible with HoTT.

Proof. Proven in [CM22].

53

Chapter 2

Inductive and Coinductive
Predicates

54

Chapter Abstract

In this chapter, we show that in various foundations, predicates defined
using wellfounded trees and those defined using non-wellfounded trees
have topological counterparts in terms of inductively generated formal
covers and coinductively generated positivity relations, respectively.
As a corollary, we extend the compatibility results of both levels of
the Minimalist Foundation to such constructions.

Although presented in parallel, the inductive part is adapted from

joint work with M. E. Maietti [MS23a], while the coinductive part is

from the work in [Sab24]. In this chapter, all the proofs performed

within Martin-Löf’s type theory have been checked in Agda. The

source code is available on

https://github.com/PietroSabelli/topological-co-induction.

2.1 Overview

Starting with natural numbers, inductive definitions are pervasive in mathe-
matics. They are even more so in predicative mathematics since, for example,
the common way of defining a subset as the smallest one satisfying certain
clauses must be replaced with an inductive definition. Perhaps less common
are their dual: coinductive definitions. On the one hand, as it often happens
in classical mathematics, this dualism is collapsed since coinductive defini-
tions can be reduced to inductive ones with the Law of Excluded Middle
(see Remark 2.2.5); on the other hand, contrary to induction, in constructive
mathematics based on type theory the computational status of coinductive
types has still not been settled.

As already mentioned, Formal Topology serves as a benchmark for pred-
icative constructive mathematics (see Section 1.1.1). Indeed, in Formal
Topology the need for both inductive and coinductive definitions strongly
manifest itself; in particular, to represent the collections of open and closed
subsets of many natural topologies. Powerful techniques for inductively gen-
erating the collection of open subsets and coinductively generating the one of
closed subsets have been developed in [CSSV03; Sam19] and have since been
a cornerstone of the field. The (co)inductive methods of Formal Topology
were later implemented in the Minimalist Foundation in the form of an in-
ductive propositional constructor and a coinductive one in [MMR22], where
the authors also extended the quotient interpretation and the realisability
interpretation of MF to account for them.

In this chapter, we discuss another way of extending the Minimalist Foun-
dation with general-purpose inductive and coinductive definitions in the style

55

https://github.com/PietroSabelli/topological-co-induction

of Aczel [Acz77]. The aim is twofold: on the one hand, we establish an equiv-
alence between such (co)inductive methods and the ones of Formal Topology;
on the other, we compare them to other established schemes of (co)induction
in the literature, in particular withW-types andM-types of Martin-Löf’s type
theory and its extensions, most notably Homotopy Type Theory [ACS15].
Our final goal (Corollary 2.6.1) is to extend the compatibility results of the
Minimalist Foundation once (co)inductive methods are added to it.

2.2 (Co)Inductive predicates in emTT

The basic idea behind any (co)inductive construction is to generate an object
by proceeding from a given set of rules – intuitively, with induction following
them in the forward direction and coinduction backwards. How such rules are
specified and used heavily depends on (1) the kind of mathematical object to
be constructed, and (2) the setting in which this construction is formalised.

Concerning the first point, a key distinction is between the (co)inductive
generation of sets and the (co)inductive generation of predicates (or, equiv-
alently, subsets); this distinction has been first put forward in the case of
induction by Kleene in [Kle52], where he called the former fundamental in-
ductive definitions, and the latter non-fundamental inductive definitions ; the
present section focuses on the latter. Paradigmatic examples of inductively
and coinductively defined sets are lists (of which natural numbers are the
most basic instance) and streams, respectively. On the other hand, the fun-
damental example of (co)inductive predicates we would consider is given by
deductive systems, which, through their rules, for a given set of syntacti-
cal expressions declare inductively which are the derivable judgements and
coinductively which are the refutable judgements.

Concerning the second point, each foundational theory has its peculiar
ways of implementing (co)induction, e.g. (non-)wellfounded trees in Martin-
Löf’s type theories, Higher Inductive Types in Homotopy Type Theory, or
Generalized Inductive Definitions in set theory. We are interested in formal-
ising in dependent type theories the latter scheme, first introduced in [Acz77]
and then adapted to a constructive setting in [Rat05; AR10]. To this end,
we first define it in both levels of the Minimalist Foundation, starting in
this section with the extensional one; then, we will show how to define its
proof-relevant version in Martin-Löf’s type theory.

The starting point is to specify how to declare rules for the (co)inductive
generation of predicates. We do so using a notion that goes under two names,
corresponding to two different – although related – interpretations. The first

56

name is rule set1, and, in this sense, it is a straightforward adaptation in the
setting of the Minimalist Foundation of the homonym notion in [Acz77]. The
second name is axiom set, defined in the context of (co)inductive generation
of formal topologies in [CSSV03]. We will focus on the first interpretation
(and hence use the first name) while presenting (co)inductive predicates. We
will turn to the second name when recalling (co)inductive methods in formal
topology.

Definition 2.2.1. A rule or axiom set over a given set A consists of the
following data:

1. a dependent family of sets I(x) set [x ∈ A];

2. a dependent family of A-subsets C(x, y) ∈ P(A) [x ∈ A, y ∈ I(x)].

Given two elements a ∈ A and i ∈ I(a), we say that i is a rule with premises
C(a, i) and conclusion a; sometimes it is represented pictorially as

C(a, i)

a
i

Hopefully, the chosen terminology makes the logical interpretation of a
rule set as an internally defined deduction system transparent. For the rest
of this section, suppose to have fixed a set A and a rule set (I, C) over it.

Recall that a predicate P on A is just a proposition depending on A

P (x) prop [x ∈ A]

A rule set induces two ways of transforming predicates.

Definition 2.2.2. Given a predicate P on A, we define two other predicates
DerI,C(P) and ConfI,C(P) on A as follows:

DerI,C(P)(x) :≡ (∃y ∈ I(x))(∀z εC(x, y))P (z) prop [x ∈ A]
ConfI,C(P)(x) :≡ (∀y ∈ I(x))(∃z εC(x, y))P (z) prop [x ∈ A]

We call them derivability and confutability from P , respectively.

As the names suggest, derivability from P tells which elements of A can be
derived with exactly one rule application, assuming as axioms the elements
for which P holds – in fact, the definition of DerI,C(P)(x) explicitly reads as
there exists a rule with conclusion x such that all its premises are satisfied by

1In [Rat05], the name is changed to inductive definition; we stick to the original ter-
minology since it helps intuition, and our treatment is not limited to induction.

57

P . Dually, confutability from P tells which elements of A can be confuted
after exactly one step of backward search, assuming that the elements for
which P holds are already refuted – the definition of ConfI,C(P)(x) reads all
rules with conclusion x have at least one premise for which P holds.

In accordance with the above interpretation, the constructions DerI,C(−)
and ConfI,C(−) can be read meta-theoretically as two endomorphisms of the
preorder of predicates on A: the preorder relation is formally given by

P ≤A Q :≡ (∀x ∈ A)(P (x)⇒ Q(x)) prop

and it is straightforward to check that P ≤A Q implies both

DerI,C(P) ≤A DerI,C(Q) and ConfI,C(P) ≤A ConfI,C(Q).

Finally, notice that if P is a small proposition, then also DerI,C(P) and
ConfI,C(P) are. Thanks to these observations, we can exploit the theory and
terminology of monotone operators.

Definition 2.2.3. Following the terminology in [Rat05], we say that a pred-
icate P on A is (I, C)-closed if it is closed with respect to DerI,C(−), namely
if

DerI,C(P) ≤A P true

Dually, we say that P is (I, C)-correct if it is correct with respect to ConfI,C(−),
namely if

P ≤A ConfI,C(P) true

Observe that, thanks to monotonicity, if P is a (I, C)-closed predicate,
we have the following chain of inequalities.

· · · ≤A DerI,C(DerI,C(P)) ≤A DerI,C(P) ≤A P

Dually, if P is (I, C)-correct, it follows

P ≤A ConfI,C(P) ≤A ConfI,C(ConfI,C(P)) ≤A · · ·

Therefore, being a closed predicate means that no new conclusion can be
derived from it. Dually, to be a correct predicate means that if the elements
satisfying it are assumed not to be derivable by the deduction system, then
they will always be considered so even after any number of backward search
steps. We are then naturally led to interpret the smallest closed predicate as
expressing derivability and the greatest correct predicate as confutability. In
the base theory, their existence is not guaranteed, let alone their smallness
as propositions. Therefore, we will postulate them. Formally, this is done
by introducing two new logical constructors Ind and CoInd. We now report
their precise rules, together with the judgements that formalise the rule set;
the latter will then be left implicit in the premises of the former.

58

Rule set parameters in emTT

A set I(x) set [x ∈ A] C(x, y) ∈ P(A) [x ∈ A, y ∈ I(x)]

Rules for inductive predicates in emTT

F-Ind
a ∈ A

IndI,C(a) props

I-Ind
DerI,C(IndI,C) ≤A IndI,C true

E-Ind
P (x) prop [x ∈ A] DerI,C(P) ≤A P true

IndI,C ≤A P true

Rules for coinductive predicates in emTT

F-CoInd
a ∈ A

CoIndI,C(a) props

E-CoInd
CoIndI,C ≤A ConfI,C(CoIndI,C) true

I-CoInd
P (x) prop [x ∈ A] P ≤A ConfI,C(P) true

P ≤A CoIndI,C true

Notice how, again, consistently with the intended interpretation, we can
deduce from their rules that IndI,C and CoIndI,C are fixed points for DerI,C
and ConfI,C , respectively.

Example 2.2.4. Recall that in Section 1.7.9 we defined the transitive closure
R+ of a relation R on a set A using the list constructor. Alternatively, we
can define it as the inductive predicate over A×A defined through the rules

R(a, b) true

R+(a, b)

R+(a, b) R+(b, c)

R+(a, b)

which can be formalised using the following rule set.

I(⟨a, b⟩) :≡ R(a, b) + A

C(⟨a, b⟩, inl(p)) :≡ ∅
C(⟨a, c⟩, inr(b)) :≡ {⟨a, b⟩, ⟨b, c⟩}

Notice that for this definition R+(x, y) :≡ IndI,C(⟨x, y⟩) [x ∈ A, y ∈ A] we do
not need to use the list constructor.

59

On the other hand, consider the following relation generated using the
coinductive predicate on the same rule set.

DiscR(x, y) :≡ CoIndI,C(⟨x, y⟩) [x ∈ A, y ∈ A]

Interpreting R as a directed graph with A as its set of vertices, the predicate
DiscR positively expresses the fact that two elements of A are disconnected
in it. Notice that proving DiscR(a, b) for two specific terms a, b ∈ A amounts
to prove

¬R(a, b) ∧ (∀x ∈ A)(DiscR(a, x) ∨ DiscR(x, b))

which is computationally more informative then the mere negation ¬R+(a, b).

Remark 2.2.5. Classically, i.e. assuming the Law of Excluded Middle, in-
ductive and coinductive predicates are complementary subsets and thus mu-
tually encodable as

CoIndI,C(x) :≡ ¬IndI,C(x) prop [x ∈ A]
IndI,C(x) :≡ ¬CoIndI,C(x) prop [x ∈ A]

To see it, observe that the following equivalences between predicates hold.

¬DerI,C(P)(x)⇔ ConfI,C(¬P)(x) true [x ∈ A]
¬ConfI,C(P)(x)⇔ DerI,C(¬P)(x) true [x ∈ A]

Therefore, a predicate P is (I, C)-closed (resp. (I, C)-correct) if and only if
its complement ¬P is (I, C)-correct (resp. (I, C)-closed) – and the smallest
(I, C)-closed predicate is the complement of the greatest (I, C)-correct one,
and vice versa.

On another note, both inductive and coinductive predicates are impred-
icatively encodable in the calculus TTopos. This is done in the usual way,
interpreting them as the intersection of all (I, C)-closed predicates and the
union of all (I, C)-correct predicates, respectively.

IndI,C(x) :≡ (∀P ∈ P(A))(DerI,C(P) ≤A P ⇒ x εP) prop [x ∈ A]
CoIndI,C(x) :≡ (∃P ∈ P(A))(P ≤A ConfI,C(P) ∧ x εP) prop [x ∈ A]

We end the presentation of (co)inductive predicates in the extensional
level by presenting alternative introduction and elimination rules for them, in
which some internal quantifiers are externalised. Although its mathematical
content is perhaps less compact, they have the advantage, on the one hand, of
emphasising the characters of introduction and elimination, thus being more
suitable to design their intensional counterparts, and, on the other hand, of
being more similar to the rules for the (co)inductive generation of formal
topologies, and thus being more easily comparable with them.

60

Lemma 2.2.6. The introduction and elimination rules for inductive predi-
cates in emTT can equivalently be formulated in the following way.

I-Ind′
a ∈ A i ∈ I(a) (∀x εC(a, i))IndI,C(x) true

IndI,C(a) true

E-Ind′

P (x) prop [x ∈ A]
P (x) true [x ∈ A, y ∈ I(x), w ∈ (∀z εC(x, y))P (z)]
a ∈ A IndI,C(a) true

P (a) true

Analogously, for coinductive predicates.

E-CoInd′
a ∈ A i ∈ I(a) CoIndI,C(a) true

(∃x εC(a, i))CoIndI,C(x) true

I-CoInd′

P (x) prop [x ∈ A]
(∃z εC(x, y))P (z) true [x ∈ A, y ∈ I(x), w ∈ P (x)]
a ∈ A P (a) true

CoIndI,C(a) true

Proof. We show how to prove that I-Ind and I-Ind′ are equivalent, the other
equivalences being proven analogously.

First, notice that the rule I-Ind explicitly reads

(∀x ∈ A)((∃y ∈ I(x))(∀z εC(x, y))IndI,C(z)⇒ IndI,C(x)) true (2.1)

First, let us assume that 2.1 and the premises of I-Ind′ hold. To derive the
conclusion of I-Ind′, apply the rule E-∀ to the universal statement of 2.1 and
on the premise a ∈ A; then apply E-⇒ to the resulting conditional statement
and to a proof of the antecedent obtained with the rule I-∃ applied to the
premisses i ∈ I(a) and true ∈ (∀x εC(a, i))IndI,C(x).

On the other hand, suppose that the rule I-Ind′ holds; it obviously derives
the judgment

IndI,C(x) true [x ∈ A, y ∈ I(x), p ∈ (∀z εC(x, y))IndI,C(z)]

One then proceeds by applying successively the rules E-∃, I- ⇒, and I-∀ to
obtain 2.1.

61

2.3 (Co)Inductive predicates in mTT

We now introduce the intensional counterparts of the rules for inductive and
coinductive predicates. They are crucial, on the one hand, to extend the
Minimalist Foundation’s intensional level and have it interpret extensional
(co)induction in its quotient model; on the other hand, to be able to compare
our notion of (co)induction with that of other intensional theories.

A rule set is formalised similarly, except for the usual replacement of
subsets for functions towards the universe of small propositions.

Rule set parameters in mTT

A set I(x) set [x ∈ A] C(x, y) ∈ A→ Props [x ∈ A, y ∈ I(x)]

The rules are then easily obtained from the extensional ones presented
as in Lemma 2.2.6 by adding the now-relevant proof terms. Regarding the
computational behaviour of the constructors, on the one hand, we can give
computational meaning to inductive proofs drawing on the usual pattern of
inductive types in Martin-Löf’s type theory; on the other hand, we stayed
close to the choice in [MMR22] of not postulating any computation rule for
coinduction; we intend, as future works, to consider the addition of such
rules, following their description in [Gim96].

Again, we keep the rule set parameters implicit in the premises.

Rules for inductive predicates in mTT

F-Ind
a ∈ A

IndI,C(a) props

I-Ind
a ∈ A i ∈ I(a) p ∈ (∀x εC(a, i))IndI,C(x)

ind(a, i, p) ∈ IndI,C(a)

E-Ind

P (x) prop [x ∈ A]
c(x, y, w) ∈ P (x) [x ∈ A, y ∈ I(x), w ∈ (∀z εC(x, y))P (z)]
a ∈ A p ∈ IndI,C(a)

ElInd(a, p, (x, y, w).c) ∈ P (a)

C-Ind

P (x) prop [x ∈ A]
c(x, y, w) ∈ P (x) [x ∈ A, y ∈ I(x), w ∈ (∀z εC(a, i))P (z)]
a ∈ A i ∈ I(a) p ∈ (∀x εC(a, i))IndI,C(x)

ElInd(a, ind(a, i, p), (x, y, w).c) = c(a, i, λz.λq.ElInd(z, p(z, q), (x, y, w).c)) ∈ P (a)

62

Rules for coinductive predicates in mTT

F-CoInd
a ∈ A

CoIndI,C(a) props

E-CoInd
a ∈ A i ∈ I(a) p ∈ CoIndI,C(a)

ElCoInd(a, i, p) ∈ (∃x εC(a, i))CoIndI,C(x)

I-CoInd

P (x) prop [x ∈ A]
c(x, y, w) ∈ (∃z εC(x, y))P (z) [x ∈ A, y ∈ I(x), w ∈ P (x)]
a ∈ A p ∈ P (a)

coind(a, p, (x, y, w).c) ∈ CoIndI,C(a)

Proposition 2.3.1. Inductive and coinductive predicates are encodable in
the Calculus of Constructions.

Proof. The Calculus of Constructions can be regarded as an impredicative
version of mTT. Thus, the proof adapts the same idea of Remark 2.2.5.
We only need to make explicit the proof terms and, regarding the inductive
predicate constructor, additionally show that the conversion rule is satisfied.

IndI,C(a) :≡ (∀P ∈ A→ Prop)

((∀x ∈ A)(∀y ∈ I(x))((∀z εC(x, y))P (z)⇒ P (x))

⇒ P (a))

ind(a, i, p) :≡ λP.λc.c(a, i, λx.λq.p(x, q, P, c))

ElPInd(a, p, (x, y, w).c) :≡ p(λx.P (x), λx.λy.λw.c(x, y, w))

CoIndI,C(a) :≡ (∃P ∈ A→ Prop)

((∀x ∈ A)(P (x)⇒ (∀y ∈ I(x))(∃z εC(x, y))P (z))
∧ P (a))

ElCoInd(a, i, p) :≡ El∃(p, (P, q).El∃(c(a, r, i), (z, s).⟨z, ⟨π1(s), ⟨P, c, π2(s)⟩⟩⟩))
where c :≡ π1(q) r :≡ π2(q)

coindP (a, p, (x, y, w).c) :≡ ⟨λx.P (x), λx.λy.λw.c(x, y, w), p⟩

The extension of the quotient model and the realisability interpretation
for the two new constructors will follow from the results already obtained
for topological (co)induction once we establish their equivalence in the next
section.

63

2.4 Topological (co)induction in MF

The development of the Minimalist Foundation has always been closely tied
to that of Formal Topology, and it is no surprise that (co)induction has been
first considered in that context. In two successive papers [MMR21; MMR22],
the authors proposed extensions of the Minimalist Foundation supporting
the formalisation of (co)inductive generation methods developed in Formal
Topology. Moreover, they showed that both the setoid interpretation of the
extensional level into the intensional one and the realisability interpretation
of the latter can be adapted to support those extensions.

We now recall those extensions, starting with the basic definitions of
Formal Topology formalised in the Minimalist Foundation.

Definition 2.4.1. A basic topology consists of the following data:

1. a set A, whose elements are called basic opens ;

2. a small binary relation ◁, called basic cover, between elements of A
and subsets of A, satisfying the following properties:

• (reflexivity) if a ε V , then a ◁ V ;

• (transitivity) if a ◁ U and (∀x εU)x ◁ V , then a ◁ V .

3. a small binary relation ⋉, called positivity relation, between elements
of A and subsets of A, satisfying the following properties:

• (coreflexivity) if a⋉ V , then a ε V ;

• (cotransitivity) if a⋉U and (∀x ∈ A)(x⋉V ⇒ x εU), then a⋉V ;

• (compatibility) if a⋉ V and a ◁ U , then (∃x ε V)(x⋉ U).

The intuitive meaning of the above definition is the following: the set A,
as its name suggests, is a base for the topology; the relation a ◁ V means
that the basic open a is covered by the family of basic opens V ; and finally,
a⋉V means that there is a point of a all whose basic neighbourhoods belongs
to V .

In [CSSV03], the authors devised a way to inductively generate a basic
cover on a given set A, starting from an axiom set (I, C) over it. In this
sense, an axiom set is the set-indexed family of axioms

a ◁ C(a, i) for each a ∈ A and i ∈ I(a)

64

The inductively generated basic cover is then the smallest one which satisfies
them. Later, in [Sam03], this idea was dualised to coinductively generate the
greatest positivity relation satisfying

a⋉ C(a, i) for each a ∈ A and i ∈ I(a)

which, moreover, turns out to be compatible with the inductively generated
basic cover on the same axiom set, and thus gives rise to a basic topology.

Example 2.4.2. Consider the set List(N), and the following axiom set over
it.

I(s) :≡ N1 + (Σl ∈ List(N))(∃t ∈ List(N))[l, t] =List(N) s

C(s, inl(⋆)) :≡ {cons(s, n) |n ∈ N}
C(s, inr(z)) :≡ {π1(z)}

where [−,−] is the concatenation operator. The basic topology obtained
by (co)induction from the above axiom set is the Baire space topology. In
particular, in this situation, the positivity relation a ⋉I,C V precisely states
that there exists a spread containing a and contained in V ; see [CS19]. This
is an example of (co)inductive definition that cannot be formalised in the
bare calculus emTT (see Proposition 2.1 of [MMR21]).

When the positivity relation a⋉V is specialised to the case where V = A,
one talks of the positivity predicate Pos(a) :≡ a⋉A; sometimes, coinductively
generated positivity predicates have been considered on their own, as in
[MV04], where the authors used them to constructively and predicatively
prove the coreflection of locales in open locales.

These methods were formalised in the Minimalist Foundation in the form
of an inductive constructor ◁ in [MMR21] and a coinductive constructor
⋉ in [MMR22], having both as parameters an axiom set (I, C) over a set A
(formalised as in the case of (co)inductive predicates), and a subset V ∈ P(A)
in the extensional level, or a propositional function V ∈ A → Props in the
intensional one. We first recall their rules in the extensional level. Again, we
leave the parameters implicit in the premises.

Rules for inductive basic covers in emTT

F-◁
a ∈ A

a ◁I,C V props

Irf-◁
a ε V true

a ◁I,C V true

65

Itr-◁
a ∈ A i ∈ I(a) (∀x εC(a, i))x ◁I,C V true

a ◁I,C V true

E-◁

P (x) prop [x ∈ A]
(∀x ∈ A)(x ε V ∨ (∃y ∈ I(x))(∀z εC(x, y))P (z)⇒ P (x)) true

a ∈ A a ◁I,C V true

P (a) true

Rules for coinductive positivity relations in emTT

F-⋉
a ∈ A

a⋉I,C V props

Ecorf-⋉
a⋉I,C V true

a ε V true

Ecotr-⋉
a ∈ A i ∈ I(a) a⋉I,C V true

(∃x εC(a, i))x⋉I,C V true

I-⋉

P (x) prop [x ∈ A]
(∀x ∈ A)(P (x)⇒ x ε V ∧ (∀y ∈ I(x))(∃z εC(x, y))P (z)) true
a ∈ A P (a) true

a⋉I,C V true

The above rules are very close to those of (co)inductive predicates pre-
sented as in Lemma 2.2.6, the only difference being the presence of the pa-
rameter V , which implies, for each of the two constructors, an additional
(co)reflection rule and the additional condition x ε V on the predicates in-
volved in the universal properties. To consider the clause induced by the
parameter V , we modify the derivability and confutability endomorphisms
in the following way.

DerI,C,V (P)(x) :≡ x ε V ∨ DerI,C(P)(x) prop [x ∈ A]
ConfI,C,V (P)(x) :≡ x ε V ∧ ConfI,C(P)(x) prop [x ∈ A]

The next lemma shows that indeed the predicates − ◁I,C V and −⋉I,CV can
be seen as the smallest closed predicate of DerI,C,V and the greatest correct
predicate of ConfI,C,V , respectively.

Lemma 2.4.3. The introduction and elimination rules for extensional in-
ductive basic covers in emTT can equivalently be formulated in the following
way.

I-◁′
DerI,C,V (− ◁I,C V) ≤A − ◁I,C V true

66

E-◁′P (x) prop [x ∈ A] DerI,C,V (P) ≤A P true

− ◁I,C V ≤A P true

Analogously for extensional coinductive positivity relations.

E-⋉′
−⋉I,C V ≤A ConfI,C,V (−⋉I,C V) true

I-⋉′ P (x) prop [x ∈ A] P ≤A ConfI,C,V (P) true

P ≤A −⋉I,C V true

Proof. The proof is entirely analogous to that of Lemma 2.2.6.

The intensional rules are designed similarly. Again, the inductive basic
cover has a computation rule, while the coinductive positivity relation does
not.

Rules for inductive basic covers in mTT

F-◁
a ∈ A

a ◁I,C V props

Irf-◁
a ∈ A r ∈ a ε V
rf(a, r) ∈ a ◁I,C V

Itr-◁
a ∈ A i ∈ I(a) p ∈ (∀x εC(a, i))x ◁I,C V

tr(a, i, p) ∈ a ◁I,C V

E-◁

P (x) prop [x ∈ A]
q1(x, y) ∈ P (x) [x ∈ A, y ∈ x ε V]

q2(x, y, w) ∈ P (x) [x ∈ A, y ∈ I(x), w ∈ (∀z εC(x, y))P (z)]
a ∈ A p ∈ a ◁I,C V

El◁(a, p, (x, y).q1, (x, y, w).q2) ∈ P (a)

Crf-◁

P (x) prop [x ∈ A]
q1(x, y) ∈ P (x) [x ∈ A, y ∈ x ε V]

q2(x, y, w) ∈ P (x) [x ∈ A, y ∈ I(x), w ∈ (∀z εC(x, y))P (z)]
a ∈ A r ∈ a ε V

El◁(a, rf(a, r), (x, y).q1, (x, y, w).q2) = q1(a, r) ∈ P (a)

Ctr-◁

P (x) prop [x ∈ A]
q1(x, y) ∈ P (x) [x ∈ A, y ∈ x ε V]

q2(x, y, w) ∈ P (x) [x ∈ A, y ∈ I(x), w ∈ (∀z εC(x, y))P (z)]
a ∈ A i ∈ I(a) p ∈ (∀x εC(a, i))x ◁I,C V

El◁(a, tr(a, i, p), q1, q2) = q2(a, i, λz.λw.El◁(z, p(z, w), q1, q2) ∈ P (a)

67

Rules for coinductive positivity relation in mTT

F-⋉
a ∈ A

a⋉I,C V props

Ecorf-⋉
a ∈ A p ∈ a⋉I,C V

corf(a, p) ∈ a ε V

Ecotr-⋉
a ∈ A i ∈ I(a) p ∈ a⋉I,C V

cotr(a, i, p) ∈ (∃x εC(a, i))x⋉I,C V

I-⋉

P (x) prop [x ∈ A]
q1(x, y) ∈ x ε V [x ∈ A, y ∈ P (x)]
q2(x, y, w) ∈ (∃z εC(x, y))P (z) [x ∈ A, y ∈ I(x), w ∈ P (x)]
a ∈ A p ∈ P (a)

coind(a, p, q1, q2) ∈ a⋉I,C V

The following result shows that the two flavours of (co)induction consid-
ered so far are equivalent.

Theorem 2.4.4. In both levels of the Minimalist Foundation, inductive basic
covers and inductive predicates are mutually encodable, and so are coinduc-
tive positivity relations and coinductive predicates. In particular, coinductive
predicates coincide with positivity predicates.

Proof. We first prove it for the extensional level. To see that topological
(co)induction encodes (co)inductive predicates, it is enough to choose V to
be irrelevant; indeed, notice that, for each axiom set (I, C) over A, the
operator DerI,C (resp. ConfI,C) is equivalent to the operator DerI,C,∅ (resp.
ConfI,C,A). It is trivial to check that the following interpretations satisfy the
rules of (co)inductive predicates.

IndI,C(x) :≡ x ◁I,C ∅
CoIndI,C(x) :≡ Pos(x) ≡ x⋉I,C A

On the other hand, assume to have an axiom set (I, C) over A, and a
subset V ∈ P(A); to prove that inductive predicates encode basic inductive
covers we define an enlarged rule set by encoding the additional reflexivity
clause given by V .

IV (x) :≡ x ε V + I(x)

CV (x, inl(p)) :≡ ∅
CV (x, inr(y)) :≡ C(x, y)

68

where, formally, we set CV (x, y, z) :≡ T(El+(y, (w).[⊥], (w).[C(x,w, z)])). We
claim that the following interpretation satisfy the rules of inductive basic
covers.

x ◁I,C V :≡ IndIV ,CV
(x)

To show that coinductive predicates encode coinductive positivity relations,
we define a restriction of both the set A and the axiom set (I, C) by com-
prehension on those elements for which V already holds.

AV :≡ (Σw ∈ A)w εV
IV (x) :≡ I(π1(x))

CV (x, y) :≡ {z ∈ AV | π1(z) εC(π1(x), y)}

We claim that the following interpretation satisfies the rules of coinductive
positivity relations as presented in Proposition 2.4.3.

x⋉I,C V :≡ (∃p ∈ x ε V)CoIndIV ,CV (⟨x, p⟩)

We prove the soundness of the above encodings in the case of the intensional
level, where, as an additional difficulty, we have to make explicit also the
interpretation of the proof terms and, in the inductive case, to check that
the computation rules are satisfied.

For the inductive case we set

rf(a, r) :≡ ind(a, inl(r), λx.λy.El⊥(y))

tr(a, i, p) :≡ ind(a, inr(i), p)

El◁(a, p, q1, q2) :≡ ElInd(a, p, (x, y, w).Ap⇒(f(x, y), w))

where f(x, y) :≡ El+(y, (u).λw.q1(x, u), (u).λw.q2(x, u, w)). Notice in partic-
ular that the encoding of the elimination term El◁ has been performed by
bearing in mind the corresponding computation rule it will need to satisfy,
which is then trivially verified.

In the case of coinduction we have the following.

corf(a, p) :≡ El∃(p, (x, y).x)

cotr(a, i, p) :≡ El∃(d, (z, w).⟨π1(z), π1(w), π2(z), π2(w)⟩)

where the d is a shorthand for the proof-term ElCoInd(⟨a,El∃(p, (x, y).x)⟩, i,El∃(p, (x, y).y))
of the proposition (∃z ∈ (Σx ∈ A)x ε V)(C(a, i, π1(z)) ∧ CoIndIV ,CV (z)); for
the coinduction term, assume to have a predicate P (x) prop [x ∈ A] and
terms q1 and q2 as in the premise of the rule I-⋉; we define the auxiliary
predicate

P ′(x) :≡ P (π1(x)) prop [x ∈ AV]

69

together with the auxiliary term

c′(x, y, w) ∈ (∃z ∈ CV (x, y))P ′(z) [x ∈ AV , y ∈ IV (x), w ∈ P ′(x)]

c′(z, y, w) :≡ El∃(q2(π1(z), y, w), (u, v).⟨⟨u, q1(u, π2(v))⟩, π1(v), π2(v)⟩)

finally, we can write the following proof-term

coind(a, p, q1, q2) :≡ ⟨q1(a, p), coind(⟨a, q1(a, p)⟩, p, (x, y, w).c′)⟩

As a corollary, we obtain that both the quotient model and the realis-
ability interpretation of the Minimalist Foundation extend to (co)inductive
predicates.

In [MMR21], the (two-level) theory obtained by extending the Minimalist
Foundation with inductive basic covers was called MFind; then, in [MMR22],
the theory obtained by extending the Minimalist Foundation with both in-
ductive basic covers and coinductive positivity relations was called MFcind.
Here, in light of Theorem 2.4.4, we overload the notation by using the same
names MFind and MFcind to refer to the theory obtained by extending the
Minimalist Foundation with inductive predicates and with both inductive
and coinductive predicates, respectively.

2.5 (Co)Induction in MLTT

Induction and coinduction in Martin-Löf’s type theory and its extensions
can assume many forms; the two paradigmatic schemes are given by a pair of
dual constructions called W-types for induction and M-types for coinduction.
In this and the next section, we examine their relationship with the forms of
(co)induction introduced in the previous section.

In this chapter, we work with a version MLη
1 of intensional Martin-Löf’s

type theory [NPS90] with the following type constructors: the empty type
N0, the unit type N1, dependent sums Σ, dependent products Π, the list
constructor List, identity types Id, disjoint sums +, and a universe of small
types U0 à la Russell closed under all the above type constructors. Induc-
tive type constructors are defined to allow elimination toward all (small and
large) types; this will also be true for the inductive types introduced in the
subsequent sections – this feature will be essential for defining predicates
recursively. Moreover, we assume η-equalities for N1, Σ-types, and Π-types.
These weaker extensional assumptions are justified in an intensional context
since they do not break any computational property, even being assumed by
default in the Agda implementation of Martin-Löf’s type theory.

70

Finally, we will also consider extending the theory with the axiom of
function extensionality funext, which for twoin MLTT is rendered as

(Πf, g ∈ (Πx ∈ A)B(x))(Πx ∈ A)Id(B(x), f(x), g(x))→ Id((Πx ∈ A)B(x), f, g)

and the additional elimination scheme for the identity type known as axiom
K introduced in [Str93].

E-K

M(x, y) type [x ∈ A, y ∈ Id(A, x, x)]

m(x) ∈M(x, id(x)) [x ∈ A] a ∈ A p ∈ Id(A, a, a)

K(p, (x).m) ∈M(a, p)

C-K

M(x, y) type [x ∈ A, y ∈ Id(A, x, x)]

m(x) ∈M(x, id(x)) [x ∈ A] a ∈ A
K(id(a), (x).m) = m(a) ∈M(a, id(a))

Recall that from axiom K (together with the standard eliminator of Martin-
Löf’s identity type) one can derive a proof-term of the axiom of Uniqueness
of Identity Proof.

Id(Id(A, x, y), p, q) type [x, y ∈ A, p, q ∈ Id(A, x, y)] (UIP)

2.5.1 Induction in MLTT

In Martin-Löf’s type theory, one of the main ways of generating inductive
sets is through the W-type constructor, also known as the wellfounded trees
constructor. The parameters of a W-type consist of a set A and an A-
indexed family of sets B, which together are often referred to as a container
[AGMM15]; the resulting type WA,B is intuitively understood as the set of
wellfounded trees with nodes labelled by elements of A and with a (possibly
infinitary) branching function given by B. The precise rules of the construc-
tor are reported below.

Rules for W-types in MLη
1

F-W
WA,B ∈ U0

I-W
a ∈ A f ∈ B(a)→ WA,B

sup(a, f) ∈ WA,B

E-W

M(w) type [w ∈ WA,B]

d(x, h, k) ∈M(sup(x, h)) [x ∈ A , h ∈ B(x)→ WA,B , k ∈ (Πy ∈ B(x))M(h(y))]

t ∈ WA,B

ElW(t, (x, h, k).d) ∈M(t)

71

C-W

M(w) type [w ∈ WA,B]

d(x, h, k) ∈M(sup(a, f)) [x ∈ A , h ∈ B(a)→ WA,B , k ∈ (Πy ∈ B(x))M(h(y))]

a ∈ A f ∈ B(a)→ WA,B

ElW(sup(a, f), (x, h, k).d) = d(a, f, λy.ElW(f(y), (x, h, k).d)) ∈M(sup(a, f))

However, W-types do not seem to have the same expressive power as in-
ductive predicates. This is because they produce just plain sets, while pred-
icates, under the propositions-as-types paradigm, are families of sets. This
same limitation has been addressed in [PS89], where the authors proposed a
generalization of W-types, called dependent W-types, capable of constructing
families of mutually inductive sets; in the literature they are also known as
general trees, or indexed W-types. Dependent W-types are interpreted again
as sets of wellfounded trees with labelled nodes2; however, each label now has
a set of possible options for the branching function; moreover, each branch-
ing function not only indicates the number of subtrees but also dictates how
each of their roots is to be labelled. The formal rendering of this intuition
in Martin-Löf’s type theory goes as follows. The parameters of a dependent
W-type, which, analogously to the non-dependent case, are referred to as in-
dexed container, consist of a small type A ∈ U0 of nodes’ labels and a family
of sets I ∈ A→ U0 indexing the possible branching functions associated with
each label. To formalise the branching functions, there are two possibilities.
Either with a function

C(x, y) ∈ A→ U0 [x ∈ A, y ∈ I(x)]

that for each label says how many immediate subtrees there are with roots
labelled by it; or with two arity functions

Br(x, y) ∈ U0 [x ∈ A, y ∈ I(x)]
ar(x, y) ∈ Br(x, y)→ A [x ∈ A, y ∈ I(x)]

that say how many immediate subtrees there are in general and the label
of each subtree’s root, respectively. It is clear how, in the first case, in-
dexed containers correspond precisely to the notion of rule set formulated
in Martin-Löf’s type theory. In either case, the type constructors are then
formalised by adapting the pattern ofW-types to account for the extra index-
ing. In particular, using the first formulation, one obtains a proof-relevant
version of inductive predicates in Martin-Löf’s type theory; as always, their
elimination rules differ from the ones in the Minimalist Foundation since

2For their interpretation as free term algebras for infinitary multi-sorted signatures, see
[Emm21].

72

now they can work towards sets depending on the constructor. For this rea-
son, in the following discussion, we will refer to dependent W-types defined
with the parameter C as (proof-relevant) inductive predicates, reserving the
name dependent W-types to just those defined using the parameters Br and
ar. Their precise rules are spelt out in the appendix A.3. Finally, once
more following the pattern of dependent W-types, in [MMR21] the authors
primitively introduced in Martin-Löf’s type theory also a constructor ◁ for-
malising proof-relevant inductive basic covers, whose rules are again recalled
in the appendix A.3.

By the results of [MS23a], we know that all the inductive constructors
presented so far can be reduced to W-types.

Theorem 2.5.2. In MLη
1, the following type constructors are mutually en-

codable.

1. W-types;

2. dependent W-types;

3. inductive predicates;

4. inductive basic covers.

Proof. In the following, we just show how to interpret types. The long-
but-routine calculations lie in explicitly constructing the interpretations for
terms and verifying, for the first statement, that the conversion rules are
satisfied using η-equalities and for the second statement, that the two types
are internally equivalent using function extensionality. We leave these details
to the meticulous reader or the proof-checking software.

W-types encode dependent W-types. The question of reducing dependent
W-types to W-types has been answered positively in a number of exten-
sional settings [PS89; GH04; AGMM15]; in particular, the technique used
in [AGMM15] has been verified in the intensional setting of the Coq proof-
assistant [Hug17]; we recast it in our setting.

Assume to have the parameters of a dependent W-type (A, I,Br, ar).
Firstly, we construct a W-type Free of wellfounded trees containing informa-
tion on the labels and the branching options of the nodes of the dependent
W-type trees we are trying to encode. We do so by saying that the nodes of
Free are labelled by dependent pairs of a label a ∈ A and a choice of branch-
ing i ∈ I(a) for it, and that the branching function is chosen correspondently
to the parameter Br. Formally, we are constructing the set

Free :≡ W(Σx∈A)I(x),Br(π1(z),π2(z))

73

Secondly, we thin out the set of Free trees with a A-indexed family of
predicates Legal(x) ∈ Free → U0 [x ∈ A] which assert, for a Free tree,
that its root’s label has x as its first component and that the root’s label
first component of each of its subtrees respects the arity function ar. The
predicate is formally defined by recursion on W-types as

Legal(a, sup(⟨b, i⟩, f)) :≡ Id(A, a, b)× (Πz ∈ Br(b, i))Legal(ar(b, i, z), f(z))

Note that, being a fixed, the identity type appearing inside the Legal state-
ment has a unique proof propositionally, and hence it is a contractible type
according to [Uni13].

Then, our candidate for encoding the dependent W-type is the following
type family.

DWBr,ar(a) :≡ (Σw ∈ Free)Legal(a, w)

We can straightforwardly define a introduction term for DW′(a) in the
following way.

dsup(a, i, f) :≡ ⟨ sup(⟨a, i⟩, λz.π1(f(z))) , ⟨ id(a), λz.π2(f(z)) ⟩ ⟩

The elimination term is a bit more involved, although it is not conceptually
harder. Suppose to have, as in the premises of the elimination rule, a type
family M(a, w) type [a ∈ A,w ∈ DW′(a)] and a dependent term

d(a, i, f, h) ∈M(a, dsup′(a, i, f))

[a ∈ A,
i ∈ I(a),
f ∈ (Πz ∈ Br(a, i))DW′(ar(a, i, z)),

h ∈ (Πz ∈ Br(a, i))M(ar(a, i, z), f(z))]

we want to define a dependent term

El′DW(a, w, d) ∈M(a, w) [a ∈ A,w ∈ DW′(a)]

validating the computational rule, that is, satisfying the following definitional
equality.

El′DW(a, dsup′(a, i, f), d) = d(a, i, f, λz.El′DW(ar(a, i, f), f(z), d))

[a ∈ A,
i ∈ I(a),
f ∈ (Πz ∈ Br(a, i))DW′(ar(a, i, z))]

74

The idea is to define the term El′DW by recursion by mimicking the above
requirement – so that the task of checking the computation rule will turn
out to be trivial. The definition explicitly reads

ElDW(a, ⟨sup(⟨a, i⟩, f), id(a), l⟩, d) :≡
d(a, i, λz.⟨f(z), l(z)⟩, λz.ElDW(ar(a, i, z), ⟨f(z), l(z)⟩, d))

where we have implicitly used the recursion principles of Σ-types, W-types
and identity types, all at once. The long-but-routine calculations lie in check-
ing that the given definitions are well-typed by formulating it only with elim-
inator terms. In particular, it is in this step of defining El′DW by recursion
that η-equalities are needed to ensure that the calculations go through. We
leave them to the assiduous reader or to the proof-checker.

(Dependent W-types encode inductive predicates). Given an axiom set
(I, C) over A, we can obtain an indexed container by considering the following
arity functions.

Br(a, i) :≡ (Σx ∈ A)C(a, i, x)
ar(a, i) :≡ λz.π1(z)

It is easy to check that the dependent W-type DWBr,ar constructed with the
above parameters encodes the inductive predicate IndI,C .

(Inductive predicates encode inductive basic covers). For this point we
start by reasoning similarly as in the Minimalist Foundation. We encode the
additional reflexive clause through a new rule set.

IV (a) :≡ V (a) + I(a)

CV (a, inl(p)) :≡ λz.N0

CV (a, inr(i)) :≡ C(a, i)

As in the MF case, the induced inductive predicate IndIV ,CV
(a) can be shown

to be logically equivalent to the inductive basic cover a ◁I,C V . However, the
above interpretation is not enough, since it does not satisfy the elimination
towards dependent sets. The problem is the same as that encountered when
naively trying to encode natural numbers using W-types in an intensional
setting (see [NPS90]), and was solved in [Hug21] by employing a technique we
will apply to the present case. The trick is to impose on the reflexive cases an
extra canonicity condition expressed by a family of predicates Canonical(x) ∈
IndIV ,CV

(x)→ U0 [x ∈ A] defined by recursion as follows.

Canonical(a, ind(a, inl(p), f)) :≡ f =(Πx∈A)(N0→IndIV ,CV
(x)) λx.λz.ElN0(z)

Canonical(a, ind(a, inr(i), f)) :≡ (Πx ∈ A)(Πy ∈ C(a, i, x))Canonical(f(x, y))

75

The following can then be checked to be a working interpretation.

a ◁I,C V :≡ (Σw ∈ IndIV ,CV
(a))Canonical(a, w)

(Inductive basic covers encode W-types). Given a container (A,B), con-
sider the axiom set over the singleton set N1 given by I(x) :≡ A and C(x, y, z) :≡
B(y). The W-type WA,B is then encoded by ⋆ ◁I,C ∅.

In the presence of function extensionality, the above constructors enjoy
neat categorical semantics, which we now review since it will be vital next
for treating coinduction.

The type WA,B can be shown to be the support of an initial algebra for
the so-called polynomial endofunctor PA,B(X) :≡ (Σx ∈ A)(B(x) → X) on
the category of types [MP00]. Analogously, inductive predicates, inductive
basic covers and dependent W-types enjoy categorical semantics as initial
algebras of the following dependent polynomial endofunctors on the category
of A-dependent types, respectively.

DerI,C(P)(x) :≡ (Σy ∈ I(x))(Πz ∈ A)(C(x, y, z)→ P (z))

DerI,C,V (P)(x) :≡ V (x) + (Σy ∈ I(x))(Πz ∈ A)(C(x, y, z)→ P (z))

DerBr,ar(P)(x) :≡ (Σy ∈ I(x))(Πz ∈ Br(x, y))P (ar(x, y, z))

We chose to reuse the name Der because the first endofunctor clearly is the
interpretation under the propositions-as-types paradigm of the derivability
constructor used to define inductive predicates in the Minimalist Foundation.

Remark 2.5.3. We recall that polynomial endofunctors of the form DerBr,ar

can be described in an arbitrary locally cartesian closed category C [GH04]
as follows. Indexed containers are specified by diagrams of the form

A
ar←− Br

br−→ I
i−→ A

and the resulting endofunctor is obtained as the composition of the following
functors

C/A ar∗−−→ C/Br Πbr−−→ C/I Σi−→ C/A

where ar∗ is the pullback functor, Πbr is the dependent product functor
induced by the locally cartesian closure of C, and Σi is the coproduct functor,
that is postcomposition by i.

The following lemma formally proves that, in the presence of function ex-
tensionality, the two choices we discussed for formalising the intuition behind
a dependent well-founded tree are equivalent.

76

Lemma 2.5.4. Each endofunctor DerI,C on the category of A-dependent
types of MLη

1 + funext induced by a rule-set (A, I, C) is naturally isomorphic
to an endofunctor of the form DerBr,ar induced by the parameters (Br, ar)
for a dependent W-type and viceversa.

Proof. To prove the first statement assume a rule set (I, C) over a set A and
consider the following parameters.

Br(x, y) :≡ (Σz ∈ A)C(x, y, z)
ar(x, y, w) :≡ π1(w)

For the converse, assuming the parameters A, I, Br and ar, consider the
axiom set (I, C), where

C(x, y, z) :≡ (Σw ∈ Br(x, y))Id(A, ar(x, y, w), z)

In both cases, it is easy to write a natural isomorphism between the two
induced endofunctors DerI,C and DerBr,ar.

Finally, notice that if we were interested just in the proof-irrelevant, log-
ical semantics of those inductive constructors, we could regard the endo-
functors above simply as endomorphism on the preorder reflection of the
category of A-dependent sets and the type constructors just as their smallest
fixed points.

2.5.5 Coinduction in MLTT

As mentioned, in Martin-Löf type theory, coinduction is usually consid-
ered through a construction dual to W-types, called M-types (also known
as non-wellfounded trees). The parameters of M-types are the same as those
of W-types; as their alternative name suggests, a type MA,B is intuitively
understood as the set of non(-necessarily)-wellfounded trees with nodes la-
belled by elements of A and with branching function given by B. However,
M-types are not usually presented through explicit inference rules; instead,
they are characterised semantically by a universal property dual to that of
W-types, namely by being terminal coalgebras for polynomial endofunctors
PA,B. Analogously, there also exist dependent M-types, dualising dependent
W-types and defined as the terminal coalgebras of dependent polynomial end-
ofunctors DerBr,ar or, equivalently by Lemma 2.5.4, DerI,C . In these forms,
it has been shown that plain and dependent M-types are encodable using
W-types in Martin-Löf’s type theory extended with function extensionality
and axiom K [AAG05], and in Homotopy Type Theory [ACS15].

77

Here, to define coinductive predicates and positivity relations in Martin-
Löf’s type theory, we follow instead the axiomatic approach taken in [MMR22],
where rules for proof-relevant coinductive positivity relations have been ex-
plicitly introduced in Martin-Löf’s type theory by just taking the correspond-
ing rules for the intensional level of the Minimalist Foundation after identi-
fying propositions with sets.

Rules for coinductive predicates in MLη
1

F-CoInd
CoIndI,C ∈ A→ U0

E-CoInd
a ∈ A i ∈ I(a) p ∈ CoIndI,C(a)

ElCoInd(a, i, p) ∈ (Σx ∈ A)(C(a, i, x)× CoIndI,C(x))

I-CoInd

M(x) type [x ∈ A]
d(x, y, w) ∈ (Σz ∈ A)(C(x, y, z)×M(z)) [x ∈ A, y ∈ I(x), w ∈M(x)]

a ∈ A m ∈M(a)

coind(a,m, (x, y, w).d) ∈ CoIndI,C(a)

Rules for coinductive positivity relations in MLη
1

F-⋉
−⋉I,C V ∈ A→ U0

E-corf-⋉
a ∈ A p ∈ a⋉I,C V

corf(a, p) ∈ V (a)

E-cotr-⋉
a ∈ A i ∈ I(a) p ∈ a⋉I,C V

cotr(a, i, p) ∈ (Σx ∈ A)(C(a, i, x)× x⋉I,C V)

I-⋉

M(x) type [x ∈ A]
q1(x, y) ∈ V (x) [x ∈ A, y ∈M(x)]

q2(x, y, w) ∈ (Σz ∈ A)(C(x, y, z)× x⋉I,C V) [x ∈ A, y ∈ I(x), w ∈M(x)]

a ∈ A p ∈M(a)

coind(a, p, q1, q2) ∈ a⋉I,C V

Notice that in this way, coinductive predicates and positivity relations are
interpreted as the greatest fixed point of the following dependent copolyno-
mial endofunctors defined in Martin-Löf’s type theory and viewed as endo-
morphisms on the preorder reflection of the category of A-dependent types,
respectively.

ConfI,C(P)(x) :≡ (Πy ∈ I(x))(Σz ∈ A)(C(x, y, z)× P (z))
ConfI,C,V (P)(x) :≡ V (x)× (Πy ∈ I(x))(Σz ∈ A)(C(x, y, z)× P (z))

78

Clearly, we also define, analogously to the inductive case, an alternative
copolynomial endofunctor ConfBr,ar induced by an indexed container (A, I,Br, ar)
as

ConfBr,ar(P)(x) :≡ (Πy ∈ I(x))(Σz ∈ Br(x, y))P (ar(x, y, z))

We can derive the dual result relating the two versions.

Lemma 2.5.6. Each endofunctor ConfI,C on the category of A-dependent
types of MLη

1 + funext induced by a rule-set (A, I, C) is naturally isomorphic
to an endofunctor of the form ConfBr,ar induced by the parameters (Br, ar)
for a dependent W-type and viceversa.

Proof. The proof is identical to that of Lemma 2.5.4.

Finally, we can give a purely categorical description also of the endo-
functors ConBr,ar in an arbitrary locally cartesian closed category C as the
composition of the following functors

C/A ar∗−−→ C/Br Σbr−−→ C/I Πi−→ C/A

The way they are defined, coinductive predicates are not related to in-
ductive predicates in the same way that M-types are related to W-types:
while coinductive predicates are defined as the greatest fixed points of the
operator Conf, which is itself dual to the defining operator Der for inductive
predicates, M-types and W-types (and their dependent versions) are termi-
nal coalgebras and initial algebras, respectively, of the same endofunctors.
For this reason, it seems we cannot get a fully symmetrical result to the one
obtained in the inductive case. Nonetheless, in Martin-Löf’s type theory,
thanks to the axiom of choice, we can prove that the class of constructors
DerI,C can encode the class ConfI,C .

Proposition 2.5.7. Each endofunctor ConfI,C on the category of A-dependent
types of MLη

1 induced by a rule-set (A, I, C) is naturally isomorphic to an
endofunctor of the form DerBr,ar induced by the parameters (Br, ar) for a
dependent W-type.

Proof. Assume to have a rule set (I, C) over A, and consider the following
parameters.

I ′(x) :≡ (Πy ∈ I(x))(Σz ∈ A)C(x, y, z)
Br(x, f) :≡ I(x)

ar(x, f, y) :≡ π1(f(y))

79

For each A-dependent type P (x) type [x ∈ A], we obtain the following
isomorphism between A-dependent types.

DerBr,ar(P)(x) = (Σf ∈ (Πy ∈ I(x))(Σz ∈ A)C(x, y, z))(Πy ∈ I(x))P (π1(f(y)))
∼= (Πy ∈ I(x))(Σw ∈ (Σz ∈ A)C(x, y, z))P (π1(w))
∼= (Πy ∈ I(x))(Σz ∈ A)(C(x, y, z)× P (z))
= ConfI,C(P)(x)

Notice that the first isomorphism above is precisely an application of the
type-theoretic axiom of choice. It is easy to check that such family of iso-
morphisms are natural in P .

Corollary 2.5.8. Coinductive predicates and coinductive positivity relations
are mutually encodable in MLη

1. Moreover, they are both encodable in any
theory extending MLη

1 in which the greatest fixed points of operators DerBr,ar

exist.

Proof. Since the rules of the constructors are identical, the proof of the first
statement is entirely analogous to that of the intensional level of the Min-
imalist Foundation. Then, it is enough to prove the second statement for
coinductive predicates. If the theory admits a greatest fixed point for every
endofunctor of the form DerBr,ar, then, by Proposition 2.5.7, it equivalently
admits one also for every endofunctor of the form ConfI,C ; the former can
then be used to interpret the coinductive predicates CoIndI,C(x).

Since the hypotheses of the above proposition only require the existence of
a greatest fixed point, it follows as an immediate corollary that any extension
of MLη

1 in which dependent M-types exist encodes coinductive predicates.
Finally, notice that if we were to take the alternative route of semantically

defining coinductive predicates as terminal coalgebras of the endofunctors
ConfI,C , Proposition 2.5.7 would have implied that they are a subclass of
M-types.

2.6 Compatibility results

The results obtained in the previous sections allow us to partially answer the
question posed in [Mai19] by extending some of the compatibility results of
Section 1.8 to (co)inductive definitions.

Corollary 2.6.1.

1. MLη
1 +W is a compatible extension of mTTind;

80

2. mTTind is compatible with HoTT;

3. MLη
1 +W + funext+ K is a compatible extension of mTTcind;

4. CCML is a compatible extension of mTTcind;

5. TArithTopos is a compatible extension of emTTcind.

6. emTTind is compatible with CZF+ REA;

7. emTTcind is compatible with CZF+ RRS-
⋃
REA.

In the last two points above, REA and RRS-
⋃
REA are the Extension Ax-

iom schemes defined for Regular sets and Strongly Regular sets satisfying the
Relation Reflection Scheme, respectively. They were introduced to accommo-
date inductive and coinductive definitions in constructive set theory; for their
precise statements see [AR10].

Proof. 1. Inductive predicates can be interpreted straightforwardly into
their analogues defined in Martin-Löf’s type theory. In turn, thanks to
Theorem 2.5.2, we know how to construct the latter using W-types.

2. Despite HoTT being an extension of MLη
1 + W, the interpretation

defined in the previous point ceases to be compatible once the target
theory is changed to HoTT. This is because propositions of the Mini-
malist Foundation should be interpreted as h-propositions. Moreover,
as already observed in the case of inductive basic covers in [CT20], the
propositional truncation of a dependent W-type does not produce an
inductive predicate; the solution adopted there, which also works for
interpreting inductive predicates, is to make more use of the expressive
power of Higher Inductive Types which allow postulating an introduc-
tion constructor ind at the same time with another constructor whose
function is to trivialise the identity type.

3. It is enough to extend the interpretation described in the first point by
interpreting mTT-coinductive predicates as MLη

1-coinductive predi-
cates, once we know that the target theory supports them since by the
results in [AGMM15] it satisfies the hypotheses of Proposition 2.5.8.

4. By Proposition 2.3.1.

5. By Remark 2.2.5.

6. By Theorem 4.6 of [MMR22].

81

7. By Theorem 13.2.3 of [AR10].

Remark 2.6.2. In [MMR22], the authors proved a compatibility result for
coinductive predicates in Martin-Löf’s type theory alternative to the one
in the second point of the above Corollary. There, instead of constructing
coinductive predicates as M-types, they assumed in the target theory the
existence of a Palmgren’s superuniverse and encoded them directly.

Remark 2.6.3. The compatibility of mTTcind with HoTT remains an open
problem. This is because, to adapt the interpretation described in [CM22]
to account for coinductive predicates, one should be able to coinductively
generate h-propositions in HoTT, but it is not evident how and if this can
be done.

82

Chapter 3

Reversing the level structure

83

Chapter Abstract

In this chapter, we reverse the level structure of the Minimalist Foun-
dation by defining an interpretation of the intensional level into the
extensional one using in particular the technique of canonical isomor-
phisms (see [Mai09; Hof95]). Together with the quotient interpreta-
tion of [Mai09], we will deduce the equiconsistency of the two levels
of MF and their equivalence over second-order arithmetic.

This chapter is adapted from joint work with M. E. Maietti [MS24].

3.1 Overview

The presence of an intensional and an extensional level in the Minimalist
Foundation resembles very closely the two versions, intensional and exten-
sional, of Martin-Löf’s type theory. Indeed, both emTT and mTT are
formulated as dependent type theories extending versions of Martin-Löf’s
type theory enriched with a primitive notion of proposition. More precisely,
emTT extends the extensional version in [Mar84], while mTT extends the
intensional one in [NPS90].

While it is notoriously difficult to interpret the extensional version of
Martin-Löf’s type theory in [Mar84] into its intensional one in [NPS90], es-
pecially in the presence of universes (see for example [Hof95; Pal22]), in the
other direction the task is trivial. Indeed, the extensional version is a di-
rect extension of the intensional one obtained mainly by strengthening the
elimination rule of the identity type to make it reflect judgemental equality.

In the case of the Minimalist Foundation, the two levels, namely mTT
and emTT, are conceptually linked according to Sambin’s forget-restore de-
sign principle [SV98], stating that extensional concepts should be obtained
by abstraction of the intensional ones in such a way that the process can be
reverted at will; see Section 1.4 for more details. This principle was imple-
mented as an interpretation of emTT in a quotient model of so-called setoids
constructed over mTT in [Mai09]. However, contrary to Martin-Löf’s type
theory, mTT is not a direct extension of emTT, as we will show next. The
question of whether the intensional level mTT can be interpreted into the
extensional one emTT is therefore not trivial, and it is what we are going
to answer positively in this chapter. Together with the quotient interpreta-
tions, this will grant important corollaries: the equiconsistency of the two
levels, and the fact that they prove the exact same sentences expressible in
the language of second-order arithmetic.

Our goal will be reached using a bridge theory betweenmTT and emTT,
namely the extension emTT+propext of emTT obtained by adding axioms

84

for propositional extensionality to it. On the one hand, it will be easy to show
that emTT+propext is an extension ofmTT; on the other, we will show that
emTT+propext is interpretable back in emTT by employing the technique
of canonical isomorphisms, already used in the interpretation of emTT in
mTT in [Mai09], independently adopted for interpretations in other type-
theoretic systems in [Hof95; Spa23], and later employed also in [CM22] to
show the compatibility of emTT with HoTT. As as a byproduct, we will
also conclude that emTT+ propext is a conservative extension of emTT.

3.2 Propositional extensionality

The only technical obstacle preventing us from seeing emTT as a direct
extension of mTT is the discrepancy between the extensional collection of
small propositions up to equiprovability P(1), and the intensional universe
Props of small propositions; in particular, it is clear that P(1) cannot interpret
Props since the derived rule of the former on the left is weaker than the
computation rule of the latter on the right:

φ props
Dc([φ])⇔ φ true

φ props
T(φ̂) = φ props

To rectify this situation, we consider adding to emTT axioms for proposi-
tional extensionality (for our purposes, only the second of the following two
rules would suffice; we will include both for symmetry).

propext
φ prop ψ prop φ⇔ ψ true

φ = ψ prop

propsext
φ props ψ props φ⇔ ψ true

φ = ψ props

Identifying equality and equiprovability for propositions clearly fixes the dis-
crepancy between the two universes. The resulting theory will be called
emTT + propext. As the next proposition shows, it is indeed an extension
of mTT (besides one of emTT), obtained by strengthening judgemental
equality and adding the quotient set constructor.

Proposition 3.2.1. emTT+ propext is an extension of mTT up to equiv-
alence of theories.

Proof. To show that emTT + propext can be obtained – up to renaming –
as an extension by rules of mTT, one first makes the following renaming in

85

the pre-syntax

Id 7→ Eq

Props 7→ P(1)
−̂ 7→ [−]

T(−) 7→ Dc(−)

and then, adds all the rules of emTT+ propext that are not already present
in mTT, namely:

1. the rules of the quotient set constructor;

2. the η-conversion rule for dependent products ηC-Π;

3. the rules for proof-irrelevance prop-mono and prop-true; in particular,
the canonical proof-term true of emTT can then interpret all the in-
tensional proof-term constructors of mTT;

4. the equality reflection rule E-Eq;

5. congruence rules for types and terms constructors;

6. structural rules for embedding equalities;

7. the rule

Fs-Eq-P(1)
U ∈ P(1) V ∈ P(1)
Eq(P(1), U, V) props

8. the two axioms of propositional extensionality propexts and propext.

The theory obtained is exactly emTT+ propext, because the rules of mTT
that are not postulated in emTT + propext are nevertheless derivable in
there, most notably the computation rule C-Props thanks to the propositional
extensionality axiom.

Remark 3.2.2. It is easy to see that the quotient model used to interpret
emTT in mTT actually interprets also emTT + propext. Indeed, the ad-
ditional axioms of propositional extensionality are validated in the quotient
model since equality of emTT-collections are interpreted as the existence of
a so-called canonical isomorphism between the mTT-extensional collections
interpreting them; however, in the case of extensional collections interpret-
ing emTT-propositions, the existence of a canonical isomorphism amounts
exactly to their equiprovability.

86

The main result of this chapter shows that emTT + propext can be in-
terpreted back in emTT. The key idea is to interpret a proposition of
emTT+ propext as a proposition of emTT up to equiprovability, that is as
an equivalence class of logically equivalent emTT-propositions. Since col-
lections may depend on propositions, crucially thanks to the prop-into-col
rule and the quotient set constructor, we will have to extend this rationale
to all types of emTT by interpreting them as types up to equivalent logical
components. The formalisation of this idea is achieved through the notion of
canonical isomorphisms.

3.3 Canonical Isomorphisms

Since in this subsection our only object theory will be emTT, we assume
that all the judgements are meant to be judgements derivable in emTT.

Definition 3.3.1 (Canonical isomorphisms). We inductively define a fam-
ily of functional terms, called canonical isomorphisms, between dependent
collections. Both the dependent collections and the canonical isomorphisms
between them will always be considered up to judgemental equality.

As customary, the common context is left implicit in each of the following
clauses.

1. if φ and ψ are logically equivalent propositions (that is, if φ⇔ ψ true
is derivable), then the unique functional term true ∈ ψ [x ∈ φ] is a
canonical isomorphism;

2. the identities of the base types N0, N1, and P(1) are canonical isomor-
phisms;

3. if τ(x) ∈ B [x ∈ A] is a canonical isomorphism between dependent
sets, then the functional term

(a1, . . . , an) ∈ List(A) 7→ (τ(a1), . . . , τ(an)) ∈ List(B)

extending τ(x) to lists element-wise is a canonical isomorphism; it can
be formally defined as

ElList(l, ϵ, (x, y, z).cons(z, τ(x))) ∈ List(B) [l ∈ List(A)]

4. if τ(x) ∈ A′ [x ∈ A] and σ(x) ∈ B′ [x ∈ B] are two canonical isomor-
phisms between dependent sets, then their coproduct

inl(a) ∈ A+B 7→ inl(τ(a)) ∈ A′ +B′

inr(b) ∈ A+B 7→ inr(σ(b)) ∈ A′ +B′

87

is a canonical isomorphism; it can be formally defined as

El+(z, (x).τ(x), (y).σ(y)) ∈ A′ +B′ [z ∈ A+B]

5. if B(x) col [x ∈ A] and B′(x) col [x ∈ A′] are two dependent collections,
and there are canonical isomorphisms

τ(x) ∈ A′ [x ∈ A] σ(x, y) ∈ B′(τ(x)) [x ∈ A, y ∈ B(x)]

then the functional term

⟨a, b⟩ ∈ (Σx ∈ A)B(x) 7→ ⟨τ(a), σ(a, b)⟩ ∈ (Σx ∈ A′)B′(x)

is a canonical isomorphism; it can be formally defined as

ElΣ(z, (x, y).⟨τ(x), σ(x, y)⟩) ∈ (Σx ∈ A′)B′(x) [z ∈ (Σx ∈ A)B(x)]

6. let B(x) col [x ∈ A] and B′(x) col [x ∈ A′] be two dependent collections
such that their dependent products are well-formed collections – that
is, either A,A′, B, and B′ are all sets, or A and A′ are sets and B and
B′ are the constant family P(1); if there are canonical isomorphisms

τ(x) ∈ A [x ∈ A′] σ(x, y) ∈ B′(x) [x ∈ A′, y ∈ B(τ(x))]

then the following is a canonical isomorphism

(λx ∈ A′)σ(x,Ap(f, τ(x))) ∈ (Πx ∈ A′)B′(x) [f ∈ (Πx ∈ A)B(x)]

7. if τ(x) ∈ B [x ∈ A] is a canonical isomorphism between sets, R(x, y)
is a small equivalence relation on A, and S(x, y) is a small equivalence
relation on B such that R(x, y) ⇔ S(τ(x), τ(y)) true [x, y ∈ A] holds,
then the functional term

[a] ∈ A/R 7→ [τ(a)] ∈ B/S

obtained by passing τ(x) to the quotient is a canonical isomorphism;
it can be formally defined as

ElQ(z, (x).[τ(x)]) ∈ B/S [z ∈ A/R]

We now derive some fundamental properties about canonical isomor-
phisms.

88

Lemma 3.3.2. If τ ∈ B [Γ, x ∈ A] is a canonical isomorphism and γ ∈
Γ [∆] is a telescopic substitution, then also τ [γ, x] ∈ B[γ] [∆, x ∈ A[γ]] is a
canonical isomorphism.

Proof. By induction on the definition of canonical isomorphism; in particular,
for the case of propositions, by the fact that judgement derivability is closed
under substitution, so that φ⇔ ψ true implies φ[γ]⇔ ψ[γ] true.

We spell out the case of dependent product. Our goal is to show that

((λx ∈ A′)σ[Ap(f, τ)/y])[γ] ∈ ((Πx ∈ A′)B′)[γ] [∆, f ∈ ((Πx ∈ A)B)[γ]]

is a canonical isomorphism. By IH we know that τ [γ, x] ∈ A[γ] [∆, x ∈ A′[γ]]
is a canonical isomorphism. Now consider the extended telescopic substi-
tution γ, x ∈ (Γ, x ∈ A′) [∆, x ∈ A′[γ]], and notice that B[τ/x][γ, x] ≡
B[γ, τ [γ]]; again by IH, we obtain that the following is a canonical isomor-
phism.

σ[γ, x, y] ∈ B′[γ, x] [∆, x ∈ A′[γ], y ∈ B[γ, τ [γ]]]

Observe that we have the following syntactical equalities.

((λx ∈ A′)σ[Ap(f, t)/y])[γ] ≡
(λx ∈ A′[γ])σ[γ,Ap(f, τ [γ])] ≡

(λx ∈ A′[γ])σ[γ, x, y][Ap(f, τ [γ])/y]

By definition we know that the last term is a canonical isomorphism.

Proposition 3.3.3. Canonical isomorphisms enjoy the following properties:

1. identities are canonical isomorphisms;

2. canonical isomorphisms are indeed isomorphisms, and their inverses
are again canonical isomorphisms;

3. the composition of two (composable) canonical isomorphisms is a canon-
ical isomorphism;

4. there exists at most one canonical isomorphism between each pair of
collections.

Proof. The proof is analogous to the one performed forHoTT in Proposition
4.11 of [CM22].

Point 1 follows by induction on the construction of the collection, exploit-
ing the η-equalities of the corresponding constructors.

Point 2 follows by induction on the definition of canonical isomorphism; in
particular, thanks to the fact that⇔ is symmetric in the case of propositions.

89

We spell out the case of dependent products. By induction hypothesis, there
exist the two canonical inverses

τ−1(x) ∈ A′ [x ∈ A] σ−1(x, y) ∈ B(τ(x)) [x ∈ A′, y ∈ B′(x)]

if we substitute the second by the first we obtain

σ−1(τ−1(x), y) ∈ B(τ(τ−1(x))) = B(x) [x ∈ A, y ∈ B′(τ−1(x))]

which is again canonical thanks to Lemma 3.3.2, so that we can consider the
canonical isomorphism

(λx ∈ A)σ−1(τ−1(x), f(τ−1(x))) ∈ (Πx ∈ A)B(x) [f ∈ (Πx ∈ A′)B′(x)]

which can be easily checked to be the inverse.
For point 3, observe that two objects are related by a canonical isomor-

phism only if they have the same outermost type constructor or if they are
both propositions; in the latter case, we rely on the transitivity of ⇔; in the
former case, we proceed by induction on the outermost type constructor. We
spell out the case of the dependent product. Suppose to have the following
canonical isomorphisms

τ(x) ∈ A [x ∈ A′]

τ ′(x) ∈ A′ [x ∈ A′′]

σ(x, y) ∈ B′(x) [x ∈ A′, y ∈ B(τ(x))]

σ′(x, y) ∈ B′′(x) [x ∈ A′′, y ∈ B′(τ ′(x))]

By Lemma 3.3.2 also the following substituted morphism is canonical

σ(τ ′(x), y) ∈ B′(τ ′(x)) [x ∈ A′′, y ∈ B(τ(τ ′(x)))]

By inductive hypothesis, the following isomorphisms obtained by composition
are canonical

τ(τ ′(x)) ∈ A [x ∈ A′′] σ′(x, σ(τ ′(x), y)) ∈ B′′(x) [x ∈ A′′, y ∈ B(τ(τ ′(x)))]

We must check that the composition of the two canonical isomorphisms

(λx ∈ A′)σ(x,Ap(f, τ(x))) ∈ (Πx ∈ A′)B′(x) [f ∈ (Πx ∈ A)B(x)]

(λx ∈ A′)σ′(x,Ap(f, τ ′(x))) ∈ (Πx ∈ A′′)B′′(x) [f ∈ (Πx ∈ A′)B′(x)]

is canonical, but their composition is equal to

(λx ∈ A′′)σ′(x,Ap((λx ∈ A′)σ(x,Ap(f, τ(x))), τ ′(x))) =

(λx ∈ A′′)σ′(x, σ(τ ′(x),Ap(f, τ(τ ′(x)))))

90

which is canonical by definition.
For point 4, recall that canonical isomorphisms are considered up to judge-

mental equality. Then, the statement is trivial in the case of propositions; in
the other cases, it is proven by induction on the outermost type constructor
of the two collections.

We can extend the notion of canonical isomorphisms to contexts of emTT.

Definition 3.3.4. We inductively define a family of telescopic substitutions
between contexts, called again canonical isomorphisms. Again, we will con-
sider them up to judgemental equality.

• the empty telescopic substitution between empty contexts () ∈ () [] is
a canonical isomorphism;

• if A col [Γ] and B col [∆] are two dependent collections, σ ∈ ∆ [Γ] is
a canonical isomorphism between contexts, and τ ∈ B[σ] [Γ, x ∈ A] is
a canonical isomorphism between collections, then the extension σ, τ ∈
(∆, x ∈ B) [Γ, x ∈ A] is a canonical isomorphism.

It is easy to check by induction that canonical isomorphisms between
contexts inherit the properties of Proposition 3.3.3.

Definition 3.3.5. We say that two contexts Γ and ∆ are canonically iso-
morphic if there exists a (necessarily unique) canonical isomorphism between
them.

We say that two dependent types A type [Γ] and B type [∆] are canoni-
cally isomorphic if their extended contexts Γ, x ∈ A and ∆, y ∈ B are canon-
ically isomorphic; equivalently, if their contexts Γ and ∆ are canonically
isomorphic, and there exists a (necessarily unique) canonical isomorphism
between A and B[σ], where σ ∈ ∆ [Γ] is the canonical isomorphism between
contexts.

Finally, we say that two telescopic substitutions γ ∈ Γ [Γ′] and δ ∈ ∆ [∆′]
are canonically isomorphic if both their domain and codomain are canon-
ically isomorphic and the compositions of telescopic substitutions depicted
pictorially in the following square are judgmentally equal

Γ′ Γ

∆′ ∆

γ

σ′ σ

δ

where σ and σ′ are the canonical isomorphisms between contexts. As a special
case of the latter definition, we say that two dependent terms are canonically

91

isomorphic if they are so as telescopic substitutions; namely, two terms a ∈
A [Γ] and b ∈ B [∆] are canonically isomorphic if the dependent collections
they belong to are canonically isomorphic and the following equality holds

τ(a) = b[σ] ∈ B[σ] [Γ]

where σ ∈ ∆ [Γ] is the canonical isomorphism between contexts, and τ(x) ∈
B[σ] [Γ, x ∈ A] is the canonical isomorphism between collections.

Remark 3.3.6. We could have organised the definitions of canonical isomor-
phisms using the language of category theory. In particular, we could have
considered the syntactic category Ctx of contexts and telescopic substitu-
tions up to judgemental equality. In that case, the square depicted above in
the definition of canonically isomorphic contexts could have been interpreted
as a diagram of Ctx, and formally required to be commutative.

The first three points of Proposition 3.3.3 imply that being canonically
isomorphic (for contexts, collections, telescopic substitutions and terms) is
an equivalence relation. Moreover, the following property of preservation
under substitution holds.

Lemma 3.3.7. Let γ ∈ Γ [Γ′] and δ ∈ ∆ [∆′] be two canonically isomor-
phic telescopic substitutions. If A type [Γ] and B type [∆] are canonically
isomorphic types, then also A[γ] type [Γ′] and B[δ] type [∆′] are canonically
isomorphic types. Moreover, if a ∈ A [Γ] and b ∈ B [∆] are canonically iso-
morphic terms, then also a[γ] ∈ A[γ] [Γ′] and b[δ] ∈ B[δ] [∆′] are canonically
isomorphic terms.

Proof. Assume σ ∈ ∆ [Γ] and τ ∈ B[σ] [Γ, x ∈ A] are the canonical iso-
morphisms induced by the hypotheses. Then, by Lemma 3.3.2, we know
that also τ [γ, x] ∈ B[σ][γ] [Γ′, x ∈ A[γ]] is canonical, but B[σ][γ] ≡ B[δ][σ′]
by definition of canonically isomorphic generalised substitutions, thus the
substituted types are canonically isomorphic. For terms, we know by hy-
pothesis that τ(a) = b[σ]; thus, by closure of judgements under substitutions
we conclude

τ [γ, a[γ]] = b[σ][γ] ≡ b[δ][σ]

Finally, we notice that we can always correct a type (resp. a term) into
a canonically isomorphic one to match a given context (type) canonically
equivalent to the original one.

92

Lemma 3.3.8. Let A type [Γ], and ∆ ctx canonically isomorphic to Γ ctx,
then there exists Ã type [∆] canonically isomorphic to A type [Γ].

Analogously, if a ∈ A [Γ] is a term and B col [∆] is a collection canoni-
cally isomorphic to A col [Γ], then there exists a term ã ∈ B [∆] canonically
isomorphic to a ∈ A [Γ].

Proof. Consider Ã :≡ A[σ−1] type [∆] and ã :≡ τ(a)[σ−1] ∈ B [∆], where
σ ∈ ∆ [Γ] and τ ∈ B[σ] [Γ, x ∈ A] are some assumed existing canonical
isomorphisms. The same σ and τ witness that A type [Γ] and Ã type [∆]
are canonically isomorphic types, and that a ∈ A [Γ] and ã ∈ B [∆] are
canonically isomorphic terms

3.4 Conservativity of propositional extension-

ality

With the machinery of canonical isomorphisms set up, we are ready to in-
terpret emTT + propext into emTT. The idea is to define an identity
interpretation up to canonical isomorphisms.

As customary in type theory, we first define a priori partial interpretation
functions on the pre-syntax of emTT+ propext; the Validity Theorem 3.4.3
will ensure that such functions are total when restricted to the derivable
judgements of emTT + propext. More in detail, we define three partial
functions which send:

1. context judgements Γ ctx to an equivalence class [[Γ ctx]] of canonically
isomorphic emTT-contexts;

2. type judgements A type [Γ] to an equivalence class [[A type [Γ]]] of
canonically isomorphic emTT-collections such that all its representa-
tives are defined in contexts belonging to [[Γ ctx]], and such that at
least one among them is of kind type;

3. term judgements a ∈ A [Γ] to an equivalence class [[a ∈ A [Γ]]] of
canonically isomorphic emTT-terms such that all its representatives
are defined in contexts belonging to [[Γ ctx]].

In the following we use the upper corner notation ⌜− ⌝ to denote equiv-
alence classes of canonically isomorphic expressions.

Definition 3.4.1 (Interpretation). The three functions specified above are
defined by recursion on the pre-syntax of emTT + propext where, in each
clause, we interpret the constructor in case (be it of contexts, types or terms)

93

with the same constructor in the target theory emTT. We spell out the case
of contexts, variables, the canonical true term, the existential quantifier, and
dependent product.

Contexts and variables.

• [[() ctx]] :≡ ⌜() ctx⌝

• [[Γ, x ∈ A ctx]] :≡ ⌜Γ′, x ∈ A′ ctx⌝

provided that [[A col [Γ]]] ≡ ⌜A′ col [Γ′]⌝

• [[x ∈ A [Γ, x ∈ A,∆]]] :≡ ⌜x ∈ A′ [Γ′, x ∈ A′,∆′]⌝

provided that [[Γ, x ∈ A,∆ ctx]] ≡ ⌜Γ′, x ∈ A′,∆′ ctx⌝

True term.

• [[true ∈ φ [Γ]]] :≡ ⌜true ∈ φ′ [Γ′]⌝

provided that [[φ prop [Γ]]] :≡ ⌜φ′ prop [Γ′]⌝

Existential quantifier.

• [[(∃x ∈ A)φ |Γ]] :≡ ⌜(∃x ∈ A′)φ′ prop [Γ′]⌝

provided that [[φ |Γ, x ∈ A]] ≡ ⌜φ′ prop [Γ′, x ∈ A′]⌝

Dependent products.

• [[(Πx ∈ A)B type [Γ]]] :≡ ⌜(Πx ∈ A′)B′ type [Γ′]⌝

provided that [[B type [Γ, x ∈ A]]] ≡ ⌜B′ type [Γ′, x ∈ A′]⌝

• [[(λx ∈ A)b ∈ (Πx ∈ A)B [Γ]]] :≡ ⌜(λx ∈ A′)b′ ∈ (Πx ∈ A′)B′ [Γ′]⌝

provided that [[b ∈ B [Γ, x ∈ A]]] ≡ ⌜b′ ∈ B′ [Γ′, x ∈ A′]⌝

• [[Ap(f, a) ∈ B[a/x] [Γ]]] :≡ ⌜Ap(f ′, a′) ∈ B′[a′/x] [Γ′]⌝

provided that [[f ∈ (Πx ∈ A)B [Γ]]] ≡ ⌜f ′ ∈ (Πx ∈ A′)B′ [Γ′]⌝

and [[a ∈ A [Γ]]] ≡ ⌜a′ ∈ A′ [Γ′]⌝

The interpretation of the other constructors is defined analogously.

To smoothly state the substitution lemma, we define in an analogous way
a fourth partial function sending judgements of the derived form γ ∈ Γ [∆] to
an equivalence class of emTT-canonically isomorphic telescopic substitutions
[[γ ∈ Γ [∆]]] defined in contexts belonging to [[∆ ctx]]. We then have the
following.

94

Lemma 3.4.2 (Substitution). Assume [[γ ∈ Γ [∆]]] ≡ ⌜γ′ ∈ Γ′ [∆′]⌝ holds,
then:

1. [[A type [Γ]]] ≡ ⌜A′ type [Γ′]⌝ implies [[A[γ] type [∆]]] ≡ ⌜A′[γ′] type [∆′]⌝;

2. [[a ∈ A [Γ]]] ≡ ⌜a′ ∈ A′ [Γ′]⌝ implies

[[a[γ] ∈ A[γ] [∆]]] ≡ ⌜a′[γ′] ∈ A′[γ′] [∆′]⌝.

Proof. By induction on the expressions A and a.

Theorem 3.4.3 (Validity). 1. if emTT + propext ⊢ Γ ctx, then [[Γ]] is
defined;

2. if emTT+ propext ⊢ A type [Γ], then [[A type [Γ]]] is defined;

3. if emTT+ propext ⊢ a ∈ A [Γ], then [[a ∈ A [Γ]]] is defined and all its
terms are defined in types belonging to [[A col [Γ]]];

4. if emTT+propext ⊢ A = B type [Γ], then [[A type [Γ]]] ≡ [[B type [Γ]]];

5. if emTT+ propext ⊢ a = b ∈ A [Γ], then [[a ∈ A [Γ]]] ≡ [[b ∈ A [Γ]]].

Proof. By induction on the derivations of emTT+propext, using Proposition
3.3.3 and Lemmas 3.3.7, 3.3.8, and 3.4.2. In most cases, it is trivial to check
that the emTT-judgements used in the interpretation are actually derivable,
and that the side condition on the contexts holds. Therefore, we mainly need
to check that the definition of the equivalence classes does not depend on the
choice of representatives, and that the rules of emTT+propext are validated.
We spell out some of the most relevant cases.

Existential quantifier. Assume that φ prop [Γ, x ∈ A] is canonically
isomorphic to ψ prop [∆, y ∈ B]; we want to show that their existential
quantification are canonically isomorphic. By hypothesis, we have canonical
isomorphisms

σ ∈ Γ [∆] τ(x) ∈ B[σ] [Γ, x ∈ A]

and we know that φ ⇔ ψ[σ, τ] holds. The following chain of equiprovable
propositions shows that also the existential propositions are equiprovable,
and thus canonically isomorphic

(∃x ∈ A)φ⇔ (∃x ∈ A)ψ[σ, τ]
⇔ (∃y ∈ B[σ])ψ[σ, y]

≡ ((∃y ∈ B)ψ)[σ]

95

where in the first step we used the fact that existential quantification pre-
serves equiprovability, and in the second one that reindexing of existential
quantifiers along isomorphisms preserves equiprovability.

Lambda abstraction. Assume that b ∈ B [Γ, x ∈ A] and b′ ∈ B′ [Γ′, x ∈ A′]
are two canonically isomorphic terms; we want to show that their lambda
abstraction are again canonically isomorphic. By hypothesis, we know there
are canonical isomorphisms

σ ∈ Γ′ [Γ]

τ(x) ∈ A′[σ] [Γ, x ∈ A]
ρ(x, y) ∈ B′[σ, τ] [Γ, x ∈ A, y ∈ B]

such that
ρ(x, b) = b′[σ, τ] ∈ B[σ, τ] [Γ, x ∈ A] (3.1)

By Proposition 3.3.3 and Lemma 3.3.2 also the following are canonical iso-
morphisms.

τ−1(x) ∈ A [Γ, x ∈ A′[σ]]

ρ(τ−1(x), y) ∈ B′[σ, x] [Γ, x ∈ A′[σ], y ∈ B(τ−1(x))]

Moreover, by applying the term ρ−1 to (1) also the following hold.

b = ρ−1(x, b′[σ, τ]) ∈ B [Γ, x ∈ A]
(λx ∈ A)b = (λx ∈ A)ρ−1(x, b′[σ, τ]) ∈ (Πx ∈ A)B [Γ]

By definition of canonical isomorphism between dependent products, we
have that the term

ζ(f) :≡ (λx ∈ A′[σ])s(τ−1(x),Ap(f, τ−1(x)))

is a canonical isomorphisms between (Πx ∈ A)B and (Πx ∈ A′[σ])B′[σ, x] ≡
((Πx ∈ A′)B′)[σ]. Finally, we can check that

ζ((λx ∈ A)b) = ζ((λx ∈ A)ρ−1(x, b′[σ, τ]))

= (λx ∈ A′[σ])ρ(τ−1(x), ρ−1(τ−1(x), b′[σ, τ][τ−1/x]))

= (λx ∈ A′[σ])b′[σ, x]

≡ ((λx ∈ A′)b′)[σ] ∈ ((Πx ∈ A′)B′)[σ] [Γ]

Thus, we have concluded that (λx ∈ A)b ∈ (Πx ∈ A)B [Γ] and (λx ∈ A′)b′ ∈
(Πx ∈ A′)B′ [Γ′] are canonically isomorphic terms.

96

Propositional extensionality. By inductive hypothesis on the first premise,
we know that, for some φ′ prop [Γ′], we have [[φ prop [Γ]]] ≡ ⌜φ′ prop [Γ′]⌝;
by inductive hypothesis on the second premise corrected by Lemma 3.3.8,
we know that [[ψ prop [Γ]]] ≡ ⌜ψ′ prop [Γ′]⌝ for some proposition ψ′ de-
fined in the same context Γ′ of φ′. By definition of the interpretation we
then have [[φ ⇔ ψ prop [Γ]]] ≡ ⌜φ′ ⇔ ψ′ prop [Γ′]⌝. Finally, by in-
ductive hypothesis on the third premise, we know that the interpretation
of [[true ∈ φ ⇔ ψ prop [Γ]]] is well defined; in particular, this means
that true ∈ φ′ ⇔ ψ′ is derivable in emTT, but this amounts to φ′ and
ψ′ being canonically isomorphic, which in turn implies [[φ prop [Γ]]] ≡
⌜φ′ prop [Γ′]⌝ ≡ ⌜ψ′ prop [Γ′]⌝ ≡ [[ψ prop [Γ]]].

Remark 3.4.4. As already mentioned, the idea of using canonical isomor-
phisms to interpret extensional equalities in type theory was originally con-
ceived in [Mai09] between objects of a quotient model, and, independently by
Hofmann in [Hof95], whilst with the additional help of the Axiom of Choice in
the meta-theory. The results in [Hof95] were later made effective in [Our05;
WST19] with the adoption of a heterogeneous equality.

Remark 3.4.5. The interpretation of emTT+ propext into emTT defined
above is effective, in the sense of [Mai09] and [WST19], since its Validity
Theorem 3.4.3 can be constructively implemented as a translation of deriva-
tions of the source theory into derivations of the target theory. We leave such
an implementation in a proof-assistant as future works.

The interpretation enjoys the following crucial (albeit trivial) property,
which allows it to be seen as a retraction of the identity interpretation of
emTT into emTT+ propext.

Proposition 3.4.6. 1. If emTT ⊢ Γ ctx, then [[Γ ctx]] ≡ ⌜Γ ctx⌝;

2. if emTT ⊢ A type [Γ], then [[A type [Γ]]] ≡ ⌜A type [Γ]⌝;

3. if emTT ⊢ a ∈ A [Γ], then [[a ∈ A [Γ]]] ≡ ⌜a ∈ A [Γ]⌝.

Proof. Straightforward by induction on the derivations of emTT.

As an immediate consequence, we have that propositional extensionality
is really a conservative assumption over emTT.

Corollary 3.4.7 (Conservativity). If emTT ⊢ φ prop [Γ] and emTT +
propext ⊢ φ true [Γ], then emTT ⊢ φ true [Γ].

97

Proof. By point 2 of Proposition 3.4.6, [[φ prop [Γ]]] ≡ ⌜φ prop [Γ]⌝; then,
by point 3 of Theorem 3.4.3, we know that [[true ∈ φ [Γ]]] is defined and the
types of its representatives are canonically isomorphic to φ prop [Γ], which,
therefore, is inhabited.

After the above results, because emTT+ propext seems to behave better
than emTT with respect to mTT, and, at the same time, it is completely
equivalent to emTT from a proof-theoretical point of view, it would be
tempting to replace emTT with emTT + propext as the extensional level
of the minimalist foundation. However, this cannot be done since adding
propositional extensionality breaks the compatibility with the calculus TTopos

for the internal language of toposes, where propext does not hold.

3.5 Equiconsistency of the two levels

Putting together the work of the previous sections we finally derive the fol-
lowing.

Corollary 3.5.1 (Equiconsistency). The theories mTT and emTT are
equiconsistent.

Proof. From the quotient interpretation of [Mai09], we know that the consis-
tency of mTT implies that of emTT. For the other direction, we know
that emTT + propext is an extension of mTT by Proposition 3.2.1; in
turn, emTT + propext is equiconsistent to its fragment emTT by Corol-
lary 3.4.7.

Furthermore, with a little extra work, we can upgrade the equiconsis-
tency result to a proof-theoretic equivalence over the language of second-order
arithmetic.

Recall that the language of second-order arithmetic is two-sorted over
predicate logic (where equality is not assumed as primitive). The sorts will
be denoted as N and P(N). All the function symbols are relative to the sort
N and they are a constant 0 for the zero; a unary function S for the successor;
and two binary functions + and · for sum and multiplication, respectively. Its
predicate symbols are a binary relations n = m for equality between terms of
sort N; and a binary relation n εU for membership between a term n sorted
by N and a term U sorted by P(N).

Such language admits an obvious interpretation both inmTT and emTT.
In particular, in mTT the sort P(N) is interpreted as N → Props, the
membership relation n εU as T(Ap(U, n)), and the equality n = m as the
intensional propositional equality Id(N, n,m); while emTT interprets the

98

sort P(N) as N → P(1), the equality relation n = m as the extensional
propositional equality Eq(N, n,m), and the membership relation n εU as
Dc(Ap(U, n)).

Corollary 3.5.2. The theories mTT and emTT prove the same second-
order arithmetic formulas.

Proof. Let φ be a formula in the language of second-order arithmetic, and
denote with φmTT and φemTT its interpretation as a proposition of mTT
and emTT, respectively. Our goal is to show that emTT ⊢ φemTT true if
and only if there exists a term p such that mTT ⊢ p ∈ φmTT.

In one direction, observe that the embedding of mTT into emTT +
propext in Proposition 3.2.1 translates φmTT into φemTT, since the only differ-
ences in the interpretations are those regarding propositional equalities Id and
Eq and the collections Props and P(1). Now assume that mTT ⊢ p ∈ φmTT

for some proof-term p; then, again by the embedding of Proposition 3.2.1,
we obtain emTT + propext ⊢ φemTT true, and, by Corollary 3.4.7, also
emTT ⊢ φemTT true.

For the other direction, we use the restore interpretation of [Mai09], de-
noted as (−)I . Firstly, we show that the interpretation φI

emTT of φemTT

in mTT is equiprovable to φmTT; more generally, we show that the quo-
tient interpretation commutes, up to isomorphism, with the interpretations
of second-order arithmetical sorts, terms, and formulas.

Logical symbols. The quotient interpretations fixes the falsum constant,
the propositional connectives, and the quantifiers.

The sort N and the equality relation. Following the interpretation of the
singleton set and the list constructor, it is easy to check that the extensional
set N and its extensional propositional equality Eq(N, x, y) can be interpreted
in mTT as N and Id(N, x, y), respectively.

Terms. Since the interpretation fixes the introduction and elimination
terms for list, all the relevant natural number terms – namely, the zero con-
stant, and the successor, addition, and multiplication operations – are fixed
when passing from emTT to mTT.

The sort P(N). By the interpretation of the function space and the power-
collection of the singleton, we have that the extensional collection P(N) is
interpreted as the intensional collection

(Σf ∈ N→ Props)(∀x, y ∈ N)(Id(N, x, y)⇒ (T(f(x))⇔ T(f(y))))

99

which, in turn, is isomorphic to N → Props, since the proposition used to
define it by comprehension is always satisfied.

The membership relation. Thanks to the interpretation of the proposi-
tional equality of the collection P(1), the interpretation of the relation of
membership is interpreted as follows.

Dc(Ap(U, n))I ≡ (Eq(P(1),Ap(U, n), [⊤]))I

≡ (T(Ap(UI , nI))⇔ ⊤)
⇔ T(Ap(UI , nI))

We can now conclude since, if emTT ⊢ φemTT true, then by the validity
of the quotient interpretation there exists a proof-term p such that mTT ⊢
p ∈ φI

emTT, and thus, by equiprovability, also one for φmTT.

Remark 3.5.3. In the above corollary, it was crucial not to have assumed
equality as a primitive logical symbol, but only as a relation between terms
of N. Its proof would not have worked if we had allowed formulas involv-
ing the equality of P(N) because the difference between intensionality and
extensionality would have appeared.

100

Chapter 4

The classical version

101

Chapter Abstract

In this chapter, we extend to the Minimalist Foundation Gödel’s double-
negation of classical arithmetic into intuitionistic arithmetic. In this
way, we show the equiconsistency of the Minimalist Foundation with
its classical version, and its compatibility with classical predicativism
à la Weyl. By adapting the same technique we show that also the
Calculus of Constructions is equiconsistent with its classical version.

This chapter is adapted from joint work with M. E. Maietti [MS24].

4.1 Overview

In Chapter 3, we proved that the two levels of the Minimalist Foundation
are equiconsistent (Corollary 3.5.1), and even equivalent when it comes to
second-order arithmetic (Corollary 3.5.2). These results, together with the
intended use of the two levels described in Section 1.4 justify the following
definition.

Definition 4.1.1. We refer to the classical counterpart or classical version
of MF as the theory emTTc obtained by extending the extensional level
emTT with the Law of Excluded Middle

LEM
φ prop

φ ∨ ¬φ true

The main goal of this chapter is to show that emTTc is equiconsistent
with emTT. We will do so by adapting the Gödel-Gentzen double-negation
translation of classical logic in the intuitionistic one (see for example [TD88])
to interpret emTTc within emTT, exploiting in particular the fact that the
type constructors of emTT preserve the ¬¬-stability (from now on, just
stability) of their propositional equalities.

As a consequence of the equiconsistency of emTT with emTTc, we
will also show that real numbers à la Dedekind do not form a set neither
in emTT, nor in emTTc. Therefore, as anticipated in Subsection 1.2.3,
emTTc can be taken as a foundation of classical predicative mathematics in
the spirit of Weyl in [Wey18], and of course MF through emTT becomes
compatible with it.

Finally, by exploiting the fact that the intensional levelmTT is a predica-
tive version of Coquand-Huet’s Calculus of Constructions [CH88], we show
that the chain of equiconsistency results for MF can be straightforwardly
adapted to an impredicative version of MF whose intensional level is the
Calculus of Constructions equipped with inductive types from the first-order

102

fragment of MLTT, which we call CCML, thus extending the result in [Sel97]
on the equiconsistency of the logical base of the calculus with its classical
version without relying on normalisation properties of CCML.

4.2 The double-negation translation

In this section we extend the double-negation translation of predicate logic
to account for the set-theory of the Minimalist Foundation in order to inter-
pret the classical version emTTc of its extensional level into the standard
intuitionistic version emTT.

The underlying idea of the translation is straightforward: we want to keep
translating propositions φ of emTTc into stable propositions φN of emTT
(i.e. those equivalent to their double negation) while leaving unaltered set-
theoretical constructors that do not involve logic.

Formally, a proposition φ prop of emTT is said to be stable if the judge-
ment ¬¬φ ⇒ φ true is derivable. Accordingly, a collection A col is said to
have stable equality if its propositional equality Eq(A, x, y) prop [x, y ∈ A] is
stable in emTT.

Since emTT is a dependent type system in which sorts can depend on
terms and propositions, the translation will be defined on all those entities,
and not just on formulas.

Definition 4.2.1 (Interpretation). We define by simultaneous recursion four
endofunctions (−)N on pre-contexts, pre-types, pre-propositions, and pre-
terms, respectively.

Variables and contexts. The translation does not affect variables, and on
contexts it is defined in the obvious way.

xN :≡ x

()N :≡ ()

(Γ, x ∈ A)N :≡ ΓN , x ∈ AN

Logic. We translate the falsum constant and the propositional connectives
exactly as in the case of predicate logic.

⊥N :≡ ⊥
(φ ∧ ψ)N :≡ φN ∧ ψN

(φ⇒ ψ)N :≡ φN ⇒ ψN

(φ ∨ ψ)N :≡ ¬¬(φN ∨ ψN)

103

The translation of the quantifiers is adapted from the case of predicate logic
by recursively apply the translation also to the domain of quantification.

((∃x ∈ A)φ)N :≡ ¬¬(∃x ∈ AN)φN

((∀x ∈ A)φ)N :≡ (∀x ∈ AN)φN

Contrary to the case of predicate logic, we do not double-negate the equality
predicates. We just translate them as follows.

Eq(A, a, b)N :≡ Eq(AN , aN , bN)

The burden of proving that the resulting proposition is stable will be trans-
ferred in the validity theorem to the translation of types, which will be re-
quired to always produce types with stable equality.

Finally, the true term is mapped to itself.

trueN :≡ true

Set constructors. Since we do not want to alter set-theoretic construc-
tions, we just recursively apply the translation to their sub-expressions. We
report here the cases of the empty set and dependent sums:

N0
N :≡ N0

ElN0(c)
N :≡ ElN0(c

N)

((Σx ∈ A)B)N :≡ (Σx ∈ AN)BN

⟨a, b⟩N :≡ ⟨aN , bN ⟩
ElΣ(d, (x, y).m)N :≡ ElΣ(d

N , (x, y).mN)

The same (trivial) pattern will apply also to the pre-syntax of singleton set,
disjoint sums, dependent products, lists and quotients.

Power-collection of the singleton. We translate the power collection of the
singleton into its subcollection of stable propositions up to equiprovability.

P(1)N :≡ (Σx ∈ P(1))(¬¬Dc(x)⇒ Dc(x))

The translation of its introduction constructor just accounts for this change.

[φ]N :≡ ⟨[φN], true⟩

104

This concludes the definition of the translation. We immediately notice
that it enjoys the following syntactical property, which we will tacitly exploit
in the rest of the discussion.

Lemma 4.2.2 (Substitution). If e and t are two expressions of the pre-
syntax, and x is a variable, then (e[t/x])N ≡ eN [tN/x].

Proof. Straightforward, by induction on the pre-syntax.

Before proving the Validity Theorem, we recall a series of closure prop-
erties for stable propositions. The following statements are already true in
intuitionistic predicate logic.

Proposition 4.2.3. 1. ⊥ is a stable proposition;

2. if φ and ψ are stable propositions, then also φ ∧ ψ is;

3. if φ is a proposition (not necessarily stable) and ψ is a stable proposi-
tion, then also φ⇒ ψ is a stable proposition;

4. if φ(x) prop [x ∈ A] is a stable proposition, then so is (∀x ∈ A)φ(x);

5. a negated proposition ¬φ is always stable.

Proof. Entirely analogous to the case of intuitionistic predicate logic.

The next proposition will be vital to prove point 2 of the Validity Theorem
4.2.5, as it shows how stability of the equality predicate is preserved by type
constructors.

Proposition 4.2.4. In emTT the following closure properties for type with
stable equality hold:

1. the set N0 has stable equality;

2. the set N1 has stable equality;

3. if A is a set with stable equality, then List(A) has stable equality;

4. if A and B are sets with stable equality, then A+B has stable equality;

5. if A is a type with stable equality and B(x) is a dependent family over
A with stable equality, then (Σx ∈ A)B(x) has stable equality;

6. if A is a set (not necessarily with stable equality) and B(x) is a de-
pendent family over A with stable equality, then if (Πx ∈ A)B(x) is a
well-formed collection, then it has stable equality;

105

7. if A is a set (not necessarily with stable equality) and R is a stable
small equivalence relation over A, then A/R has stable equality;

8. the collection (Σx ∈ P(1))(¬¬Dc(x)⇒ Dc(x)) has stable equality;

9. propositions have stable equality.

Proof. In the following, in the proof of each point we implicitly exploit the
characterisation of equality of type constructors proved in Proposition 1.7.8,
and the usual properties of stable propositions recalled in Proposition 4.2.3.

1. Trivial, since ⊥ is stable.

2. Trivial, since ⊤ is stable.

3. By induction on lists, again using the fact that ⊥ and ⊤ are stable,
and that conjunction preserves stability.

4. By induction on disjoint sums.

5. Assume A col and B(x) col [x ∈ A] to be two collections with stable
equality. We must prove that for terms a, a′ ∈ A, b ∈ B(a), and
b′ ∈ B(a′) the proposition (∃x ∈ a =A a′) b =B(a) b

′ is stable. By
the elimination rule of the existential quantifier, we can derive the
following.

(∃x ∈ a =A a
′) b =B(a) b

′ ⇒ a =A a
′

(∀y ∈ a =A a
′)((∃x ∈ a =A a

′) b =B(a) b
′ ⇒ b =B(a) b

′)

From these, we get

¬¬(∃x ∈ a =A a
′) b =B(a) b

′ ⇒ ¬¬a =A a
′ (4.1)

(∀y ∈ a =A a
′)(¬¬(∃x ∈ a =A a

′) b =B(a) b
′ ⇒ ¬¬b =B(a) b

′) (4.2)

Assume ¬¬(∃x ∈ a =A a
′) b =B(a) b

′; from (4.1) we deduce ¬¬a =A a
′

and, since A has stable equality, we conclude a =A a′; knowing that
a =A a

′ holds, we can now apply the hypothesis to (4.2) and we deduce
¬¬b =B(a) b

′, which, since B(a) has stable equality for any given a,
implies b =B(a) b

′; finally, by the introduction rule of the existential
quantifier we have (∃x ∈ a =A a′) b =B(a) b

′. Hence, we have shown
that the proposition (∃x ∈ a =A a

′) b =B(a) b
′ is stable.

6. Stability is preserved by universal quantification.

106

7. By induction on quotients, recalling that quotients in emTT are effec-
tive.

8. For the collection (Σx ∈ P(1))(¬¬Dc(x)⇒ Dc(x)) we have that, by the
rules for equality of dependent pairs and propositions in Proposition
1.7.8, its propositional equality is equivalent to

π1(z) =P(1) π1(w) with z, w ∈ (Σx ∈ P(1))(¬¬Dc(x)⇒ Dc(x))

which, again by the case of P(1) in Proposition 1.7.8, is in turn equiv-
alent to

Dc(π1(z))⇔ Dc(π1(w))

Since the propositions Dc(π1(z)) and Dc(π1(w)) are stable (by π2(z) and
π2(w), respectively), and since conjunction and implication preserve
stability, we conclude that (Σx ∈ P(1))(¬¬Dc(x)⇒ Dc(x)) has stable
equality.

9. Trivial, since ⊤ is stable.

We are now ready to prove the validity of the interpretation.

Theorem 4.2.5 (Validity). The translation is an interpretation of emTTc

into emTT, in the sense that it preserves judgement derivability between the
two theories:

1. if emTTc ⊢ Γ ctx, then emTT ⊢ ΓN ctx

2. if emTTc ⊢ A type [Γ], then emTT ⊢ AN type [ΓN]

3. if emTTc ⊢ a ∈ A [Γ], then emTT ⊢ aN ∈ AN [ΓN]

4. if emTTc ⊢ A = B type [Γ], then emTT ⊢ AN = BN type [ΓN]

5. if emTTc ⊢ a = b ∈ A [Γ], then emTT ⊢ aN = bN ∈ AN [ΓN]

Moreover, the translation produces stable propositions and, in particular, col-
lections with stable equality:

6. if emTTc ⊢ φ prop [Γ], then

emTT ⊢ ¬¬φN ⇒ φN true [ΓN]

107

7. if emTTc ⊢ A col [Γ], then

emTT ⊢ ¬¬Eq(AN , x, y)⇒ Eq(AN , x, y) true [ΓN , x ∈ AN , y ∈ AN]

Proof. All seven points are proved simultaneously by induction on judge-
ments derivation. Due to the trivial pattern of the translation on most of
the constructors, the majority of cases are trivially checked.

The cases involving the axiom of the excluded middle, the falsum con-
stant, the disjunction and the existential quantifier are checked as in the
case of translating classical predicate logic into the intuitionistic one using
Proposition 4.2.3.

Point 6 on propositional equality is checked using the inductive hypothesis
on point 7; in turn, for point 7 it suffices to apply the inductive hypotheses
using Proposition 4.2.4.

As an immediate corollary we have that

Corollary 4.2.6. The theories emTTc and emTT are equiconsistent.

Proof. By point 3 of Theorem 3.4.3, since the inconsistency judgement true ∈
⊥ [] is sent by the translation to itself.

4.3 Compatibility with classical predicativism

à la Weyl

As anticipated in Section 1.2.3, from the equiconsistency between emTT
and emTTc, we can deduce that, accordingly to Weyl’s treatment of clas-
sical predicative mathematics [Wey18], neither Dedekind real numbers nor
functional relations from the set of natural numbers to itself form a set.

We start by observing that, although classical, in emTTc the type of
booleans Bool :≡ N1 + N1 is not a propositional classifier; this is because,
even in the presence of the excluded middle, we cannot eliminate from a
disjunction φ ∨ ¬φ towards the set N1 + N1. More generally, we can easily
adapt Proposition 1.7.4 to prove the following result.

Proposition 4.3.1. In emTTc, the collections P(1) and P(N) are proper.

Proof. Since we know by Corollary 4.2.6 that emTTc is equiconsistent with
emTT, we can follow the same proof of Proposition 1.7.4.

108

Moreover, recall that in emTT the collection of real numbers can be
defined through Dedekind (left) cuts as

R :≡ (ΣA ∈ P(Q))((∃q ∈ Q)q εA

∧ (∃q ∈ Q)¬q εA
∧ (∀q εA)(∀r ∈ Q)(r < q ⇒ r εA)

∧ (∀q εA)(∃r εA)q < r)

while the collection of functional relations from the set of natural numbers
to itself as

FunRel(N,N) :≡ (ΣR ∈ P(N× N))(∀x ∈ N)(∃!y ∈ N)R(⟨x, y⟩)

Theorem 4.3.2. In emTTc, and thus also in emTT, the collections R and
FunRel(N,N) are proper.

Proof. If R were isomorphic to a set, then the set {0, 1}R obtained from R
by comprehension through the small proposition

(∀q ∈ Q)(q εA⇔ q < 0) ∨ (∀q ∈ Q)(q εA⇔ q < 1) with A ∈ P(Q)

would be isomorphic to a set too. In turn, it is easy to show that, classically,
P(1) is isomorphic to {0, 1}R; the isomorphism is obtained by specialising to
{0, 1}R the following operations between P(1) and P(Q).

[(∀q ∈ Q)(q εA⇔ q < 1)] ∈ P(1) [A ∈ P(Q)]

{q ∈ Q | (q < 0 ∧ ¬Dc(x)) ∨ (q < 1 ∧ Dc(x))} ∈ P(Q) [x ∈ P(1)]

We conclude by Proposition 4.3.1.
For FunRel(N,N) the proof is analogous, using the set obtained by compre-

hension from it through the small proposition R(⟨x, y⟩)⇒ y =N 0 ∨ y =N 1,
with R ∈ P(N× N).

4.4 Equiconsistency of the Calculus of Con-

structions with its classical version

Recall that the intensional levelmTT ofMF can be seen as a predicative ver-
sion of the Calculus of Constructions in [CH88]. More precisely, consider the
impredicative theory mTTimp obtained by extending the intensional level

109

mTT with the congruence rules for types and terms and with the follow-
ing resizing rules collapsing the predicative distinction between effective and
open-ended types.

col-into-set
A col

A set
prop-into-props

φ prop

φ props

Analogously, consider the impredicative theory emTTimp obtained by ex-
tending emTT with the same resizing rules above.

The theories mTTimp and emTTimp can be interpreted as an extended
version of the Calculus of Constructions with inductive types from MLTT,
and an extensional version of it with the quotient constructor, respectively.
In particular, we know from Theorem 1.8.2, that mTTimp coincides with
CCML.

Remarkably, the addition of impredicativity to MF does not affect most
of the techniques used to investigate its meta-mathematical properties. In
particular, the quotient interpretation of [Mai09], the equiconsistency of the
two levels proven in Chapter 3, and the equiconsistency with the classical
version proven in this chapter all scale easily to the impredicative case.

Proposition 4.4.1. The theory emTTimp is interpretable in the quotient
model constructed over mTTimp.

Proof. By using the same interpretation defined in [Mai09]. The additional
resizing rules of emTTimp are easily validated. For example, consider the rule
col-into-set; to check its validity we need to know that, for each emTTimp-
collection A, the dependent extensional collection AI

= interpreting it is a
dependent extensional set, which, by definition, amounts to know that its
support AI is a set and its equivalence relation =AI is a small proposition;
but this is guaranteed precisely by the resizing rules of mTTimp.

Corollary 4.4.2. The theory emTTimp is interpretable in the quotient model
constructed over CCML.

Proof. Combining Theorem 1.8.2 and 4.4.1.

Proposition 4.4.3. emTTimp+propext is conservative over emTTimp, and
emTTc

imp + propext is conservative over emTTc
imp.

Proof. Since canonical isomorphisms has been defined inductively in the
meta-theory, and not internally as in [CM22], we can use the same inter-
pretation described in Definition 3.4.1. In the second point of the Validity
Theorem 3.4.3, the additional resizing rules of the source theories are val-
idated thanks to the same rules in the corresponding target theory; in the

110

third point of the same theorem, the additional axiom LEM is validated
analogously, thanks to the fact that the interpretation fixes the connectives:
[[φ ∨ ¬φ]] ≡ ⌜φ ∨ ¬φ⌝ whenever [[φ]] ≡ ⌜φ⌝. By the same observations,
Proposition 3.4.6 still holds in the presence of resizing rules and of LEM.
Then, we can conclude as in Corollary 3.4.7.

Proposition 4.4.4. The theories emTTc
imp and emTTimp are equiconsis-

tent.

Proof. By using the double-negation interpretation already defined in 4.2.1
for the predicative case; the additional resizing rules are trivially validated
in the second point of the Validity Theorem 4.2.5.

We then consider the classical version of CCML obtained by adding to
its calculus a constant lem formalising the Law of the Excluded Middle.

lem ∈ (∀x ∈ Prop)(x ∨ ¬x)

We call CCc
ML the resulting theory. Notice that, contrary to MF, where

we focused on the extensional level to define its classical version, here we
chose to add classical logic directly in the intensional level. We think this
choice is more in line with the existing literature on classical extensions of
the Calculus of (Inductive) Constructions.

Remark 4.4.5. Even with the additional power given by the combination
of impredicativity and the excluded middle, in CCc

ML, the set Bool is not a
propositional classifier, again because of the distinction between propositions
and arbitrary types.

Proposition 4.4.6. CCc
ML is interpretable in emTTc

imp + propext.

Proof. Thanks to Theorem 1.8.2, we can refer to the theory mTTimp ex-
tended with the constant lem above. Then, we extend the interpretation of
Proposition 3.2.1 by sending such new constant to the canonical proof-term
of the extensional level lem 7→ true. The additional rules assumed on top
of those of mTT, namely the congruence rules, the resizing rules, and the
typing axiom of lem are validated by the interpretation simply because all
their translations are equivalent to rules already present in emTTc

imp.

Corollary 4.4.7. The theories CCML and CCc
ML are equiconsistent.

Proof. Following the chain of interpretations depicted below, successively ap-
plying Proposition 4.4.6, Proposition 4.4.3, Proposition 4.4.4, and Corollary

111

4.4.2.

CCc
ML CCML

emTTc
imp + propext emTTc

imp emTTimp

112

Conclusions

In this work, we first provided a thorough introduction to the Minimalist
Foundation, recalling in particular its compatibility with other foundational
systems for constructive mathematics (Chapter 1). Drawing from the works
in [MS23a] and [Sab24], these compatibility results were then extended to
the presence of inductive and coinductive predicates, which in turn we have
shown to coincide with the inductive and coinductive construction of topolo-
gies in Formal Topology and the well-known (co)inductive scheme of (non-
)well-founded trees in Martin-Löf’s type theory (Chapter 2). Successively, we
proceeded to investigate some important meta-theoretical properties of the
Minimalist Foundation by adapting the results in [MS24]. On the one hand,
we improved our understanding of the relationship between its two levels
by proving their equiconsistency, and, more generally, their equivalence over
second-order arithmetic (Chapter 3). On the other hand, we investigated
the classical version of the Minimalist Foundation, showing, in particular, its
equiconsistency with the standard intuitionistic version and its compatibility
with classical predicativism à la Weyl (Chapter 4).

As future works, we would especially like to merge the results of Chapters
2 and 4 in the sense of proving the equiconsistency between the classical
and the intuitionistic version of the Minimalist Foundation extended with
inductive and coinductive predicates. The difficulty of this task lies in the
fact that we cannot reuse the same technique we used for the base calculus,
namely the Gödel-Gentzen double-negation translation; since it does not go
through the (co)inductive definitions considered in Chapter 2.

113

Bibliography

[AAG05] M. G. Abbott, T. Altenkirch, and N. Ghani. “Containers: Con-
structing strictly positive types”. In: Theor. Comput. Sci. 342.1
(2005), pp. 3–27.

[ACS15] B. Ahrens, P. Capriotti, and R. Spadotti. “Non-wellfounded
trees in homotopy type theory”. In: 13th International Con-
ference on Typed Lambda Calculi and Applications. Vol. 38.
LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-
Zent. Inform., Wadern, 2015, pp. 17–30. isbn: 978-3-939897-
87-3.

[Acz77] P. Aczel. “An Introduction to Inductive Definitions”. In: Hand-
book of Mathematical Logic. Ed. by Jon Barwise. Vol. 90. Stud-
ies in Logic and the Foundations of Mathematics. Elsevier,
1977, pp. 739–782. doi: https://doi.org/10.1016/S0049-
237X(08)71120-0. url: https://www.sciencedirect.com/
science/article/pii/S0049237X08711200.

[AGMM15] T. Altenkirch, N. Ghani, C. McBride, and P. Morris. “Indexed
containers”. In: Journal of Functional Programming 25 (2015),
e5. doi: 10.1017/S095679681500009X.

[AK16] Thorsten Altenkirch and Ambrus Kaposi. “Type Theory in
Type Theory Using Quotient Inductive Types”. In: SIGPLAN
Not. 51.1 (Jan. 2016), pp. 18–29. issn: 0362-1340. doi: 10.
1145/2914770.2837638. url: https://doi.org/10.1145/
2914770.2837638.

[AR10] P. Aczel and M. Rathjen. “Notes on constructive set theory”.
Book draft. 2010. url: http://www1.maths.leeds.ac.uk/

~rathjen/book.pdf.

[BB12] E. Bishop and D. Bridges. Constructive Analysis. Grundlehren
der mathematischen Wissenschaften. Springer Berlin Heidel-
berg, 2012. isbn: 9783642616679. url: https://books.google.
it/books?id=GF8lBAAAQBAJ.

114

https://doi.org/https://doi.org/10.1016/S0049-237X(08)71120-0
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71120-0
https://www.sciencedirect.com/science/article/pii/S0049237X08711200
https://www.sciencedirect.com/science/article/pii/S0049237X08711200
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1145/2914770.2837638
https://doi.org/10.1145/2914770.2837638
https://doi.org/10.1145/2914770.2837638
https://doi.org/10.1145/2914770.2837638
http://www1.maths.leeds.ac.uk/~rathjen/book.pdf
http://www1.maths.leeds.ac.uk/~rathjen/book.pdf
https://books.google.it/books?id=GF8lBAAAQBAJ
https://books.google.it/books?id=GF8lBAAAQBAJ

[Bre15] L. Bressan. An extension of the Minimalist Foundation with
well founded trees. University of Padova, supervised by M. E.
Maietti, 2015.

[CH88] T. Coquand and G. P. Huet. “The Calculus of Constructions”.
In: Inf. Comput. 76 (1988), pp. 95–120. url: https://api.
semanticscholar.org/CorpusID:15433820.

[CM22] M. Contente and M. E. Maietti. “The Compatibility of the Min-
imalist Foundation with Homotopy Type Theory”. In: 2022.
url: https://api.semanticscholar.org/CorpusID:250408058.

[CM24] M. Contente and M. E. Maietti. On the Compatibility of Con-
structive Predicative Mathematics with Weyl’s Classical Pred-
icativity. 2024. arXiv: 2407.04161 [math.LO]. url: https:
//arxiv.org/abs/2407.04161.

[CP90] T. Coquand and C. Paulin. “Inductively defined types”. In:
COLOG-88. Ed. by Per Martin-Löf and Grigori Mints. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1990, pp. 50–66. isbn:
978-3-540-46963-6.

[CS19] F. Ciraulo and G. Sambin. “Reducibility, a constructive dual
of spatiality”. In: J. Log. Anal. 11 (2019), Paper No. FT1, 26.
issn: 1759-9008.

[CSSV03] T. Coquand, G. Sambin, J. Smith, and S. Valentini. “Induc-
tively generated formal topologies.” In: Annals of Pure and
Applied Logic 124.1-3 (2003), pp. 71–106.

[CT20] T. Coquand and A. Tosun. “Formal Topology and Univalent
Foundations”. In: Proof and Computation II. 2020. Chap. Chap-
ter 6, pp. 255–266. doi: 10.1142/9789811236488_0006. eprint:
https://www.worldscientific.com/doi/pdf/10.1142/

9789811236488_0006. url: https://www.worldscientific.
com/doi/abs/10.1142/9789811236488_0006.

[Dyb96] P. Dybjer. “Internal type theory”. In: Types for Proofs and Pro-
grams. Ed. by Stefano Berardi and Mario Coppo. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1996, pp. 120–134. isbn:
978-3-540-70722-6.

[Emm21] Jacopo Emmenegger. “W-types in setoids”. In: Logical Methods
in Computer Science Volume 17, Issue 3 (Sept. 2021). doi: 10.
46298/lmcs-17(3:28)2021. url: https://lmcs.episciences.
org/8521.

115

https://api.semanticscholar.org/CorpusID:15433820
https://api.semanticscholar.org/CorpusID:15433820
https://api.semanticscholar.org/CorpusID:250408058
https://arxiv.org/abs/2407.04161
https://arxiv.org/abs/2407.04161
https://arxiv.org/abs/2407.04161
https://doi.org/10.1142/9789811236488_0006
https://www.worldscientific.com/doi/pdf/10.1142/9789811236488_0006
https://www.worldscientific.com/doi/pdf/10.1142/9789811236488_0006
https://www.worldscientific.com/doi/abs/10.1142/9789811236488_0006
https://www.worldscientific.com/doi/abs/10.1142/9789811236488_0006
https://doi.org/10.46298/lmcs-17(3:28)2021
https://doi.org/10.46298/lmcs-17(3:28)2021
https://lmcs.episciences.org/8521
https://lmcs.episciences.org/8521

[Fef82] S. Feferman. “Iterated inductive fixed-point theories: applica-
tion to Hancock’s conjecture”. In: Patras Logic Symposion. Ed.
by G. Metakides. North Holland, 1982, pp. 171–196.

[GA06] N. Gambino and P. Aczel. “The generalised type-theoretic in-
terpretation of constructive set theory”. In: Journal of Symbolic
Logic 71.1 (2006), pp. 67–103. doi: 10.2178/jsl/1140641163.

[GH04] N. Gambino and M. Hyland. “Wellfounded trees and depen-
dent polynomial functors”. In: Types for proofs and programs.
Vol. 3085. Lecture Notes in Comput. Sci. Springer, Berlin, 2004,
pp. 210–225. isbn: 3-540-22164-6. doi: 10.1007/978-3-540-
24849-1_14. url: https://doi.org/10.1007/978-3-540-
24849-1_14.

[Gim96] E. Giménez. “A Calculus of Infinite Constructions and its ap-
plication to the verification of communicating systems”. PhD
thesis. Ecole Normale Supérieure de Lyon, 1996.

[Hof95] M. Hofmann. “Conservativity of equality reflection over inten-
sional type theory”. In: International Workshop on Types for
Proofs and Programs. Springer. 1995, pp. 153–164.

[Hug17] J. Hugunin. IWTypes. https://github.com/jashug/IWTypes.
2017.

[Hug21] J. Hugunin. “Why Not W?” In: 26th International Conference
on Types for Proofs and Programs (TYPES 2020). Ed. by Ugo
de’Liguoro, Stefano Berardi, and Thorsten Altenkirch. Vol. 188.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021, 8:1–8:9. isbn: 978-3-95977-182-5. doi: 10.4230/LIPIcs.
TYPES.2020.8. url: https://drops.dagstuhl.de/opus/
volltexte/2021/13887.

[IMMS18] H. Ishihara, M. E. Maietti, S Maschio, and T. Streicher. “Con-
sistency of the intensional level of the Minimalist Foundation
with Church’s thesis and axiom of choice”. In: Arch. Math.
Logic 57.7-8 (2018), pp. 873–888. issn: 0933-5846. doi: 10.
1007/s00153-018-0612-9. url: https://doi.org/10.1007/
s00153-018-0612-9.

[Kle52] S. C. Kleene. Introduction to Metamathematics. Princeton, New
Jersey: D. van Nostrand, 1952.

116

https://doi.org/10.2178/jsl/1140641163
https://doi.org/10.1007/978-3-540-24849-1_14
https://doi.org/10.1007/978-3-540-24849-1_14
https://doi.org/10.1007/978-3-540-24849-1_14
https://doi.org/10.1007/978-3-540-24849-1_14
https://github.com/jashug/IWTypes
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
https://drops.dagstuhl.de/opus/volltexte/2021/13887
https://drops.dagstuhl.de/opus/volltexte/2021/13887
https://doi.org/10.1007/s00153-018-0612-9
https://doi.org/10.1007/s00153-018-0612-9
https://doi.org/10.1007/s00153-018-0612-9
https://doi.org/10.1007/s00153-018-0612-9

[Law69] F. W. Lawvere. “Adjointness in Foundations”. In: Dialectica
23.3/4 (1969), pp. 281–296. issn: 00122017, 17468361. url:
http://www.jstor.org/stable/42969800 (visited on 07/09/2024).

[Mai05] M. E. Maietti. “Modular correspondence between dependent
type theories and categories including pretopoi and topoi”. In:
Math. Structures Comput. Sci. 15.6 (2005), pp. 1089–1149. issn:
0960-1295,1469-8072. doi: 10.1017/S0960129505004962. url:
https://doi.org/10.1017/S0960129505004962.

[Mai09] M. E. Maietti. “A minimalist two-level foundation for construc-
tive mathematics”. In: Ann. Pure Appl. Logic 160.3 (2009),
pp. 319–354. issn: 0168-0072,1873-2461. doi: 10 . 1016 / j .

apal.2009.01.006. url: https://doi.org/10.1016/j.
apal.2009.01.006. See the revised version at url: https:
//arxiv.org/abs/0811.2774.

[Mai17] M. E. Maietti. “On choice rules in dependent type theory”. In:
Theory and applications of models of computation. Vol. 10185.
Lecture Notes in Comput. Sci. Springer, Cham, 2017, pp. 12–
23. doi: 10.1007/978- 3- 319- 55911- 7_2. url: https:
//doi.org/10.1007/978-3-319-55911-7_2.

[Mai19] M. E. Maietti. “Discriminating between foundations for neutral
constructivism via the Minimalist Foundation”. Mathematical
Logic and Constructivity: The Scope and Limits of Neutral
Constructivism. 2019. url: http://logic.math.su.se/mloc-
2019/programme.html#maria-emilia-maietti-abstract.

[Mai20] M. E. Maietti. “What notion of predicative topos?” Memorial
Conference for Erik Palmgren. 2020. url: http : / / logic .
math.su.se/palmgren-memorial/#maietti.

[Mar84] P. Martin-Löf. Intuitionistic Type Theory, notes by G. Sambin
of a series of lectures given in Padua, June 1980. Bibliopolis,
Naples, 1984.

[MM15] M. E. Maietti and S. Maschio. “An extensional Kleene real-
izability semantics for the Minimalist Foundation”. In: 20th
International Conference on Types for Proofs and Programs.
Vol. 39. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2015, pp. 162–186.

117

http://www.jstor.org/stable/42969800
https://doi.org/10.1017/S0960129505004962
https://doi.org/10.1017/S0960129505004962
https://doi.org/10.1016/j.apal.2009.01.006
https://doi.org/10.1016/j.apal.2009.01.006
https://doi.org/10.1016/j.apal.2009.01.006
https://doi.org/10.1016/j.apal.2009.01.006
https://arxiv.org/abs/0811.2774
https://arxiv.org/abs/0811.2774
https://doi.org/10.1007/978-3-319-55911-7_2
https://doi.org/10.1007/978-3-319-55911-7_2
https://doi.org/10.1007/978-3-319-55911-7_2
http://logic.math.su.se/mloc-2019/programme.html#maria-emilia-maietti-abstract
http://logic.math.su.se/mloc-2019/programme.html#maria-emilia-maietti-abstract
http://logic.math.su.se/palmgren-memorial/#maietti
http://logic.math.su.se/palmgren-memorial/#maietti

[MMR21] M. E. Maietti, S. Maschio, and M. Rathjen. “A realizability
semantics for inductive formal topologies, Church’s thesis and
axiom of choice”. In: Log. Methods Comput. Sci. 17.2 (2021),
Paper No. 21, 21. issn: 1860-5974. url: https://doi.org/
10.23638/LMCS-17(2:21)2021.

[MMR22] M. E. Maietti, S. Maschio, and M. Rathjen. “Inductive and
coinductive topological generation with Church’s thesis and the
axiom of choice”. In: Log. Methods Comput. Sci. 18.4 (2022),
Paper No. 5, 28. issn: 1860-5974.

[MP00] I. Moerdijk and E. Palmgren. “Wellfounded trees in categories”.
In: Annals of Pure and Applied Logic 104.1 (2000), pp. 189–218.
issn: 0168-0072. doi: https://doi.org/10.1016/S0168-
0072(00)00012-9. url: https://www.sciencedirect.com/
science/article/pii/S0168007200000129.

[MPR23] M. E. Maietti, F. Pasquali, and G. Rosolini. Quasitoposes as el-
ementary quotient completions. 2023. arXiv: 2111.15299 [math.LO].
url: https://arxiv.org/abs/2111.15299.

[MS05] M. E. Maietti and G. Sambin. “Toward a minimalist founda-
tion for constructive mathematics”. In: From sets and types to
topology and analysis. Vol. 48. Oxford Logic Guides. Oxford
Univ. Press, Oxford, 2005, pp. 91–114. doi: 10.1093/acprof:
oso/9780198566519.003.0006. url: https://doi.org/10.
1093/acprof:oso/9780198566519.003.0006.

[MS22] S. Maschio and P. Sabelli. “On the compatibility between the
minimalist foundation and constructive set theory”. In: Rev-
olutions and revelations in computability. Vol. 13359. Lecture
Notes in Comput. Sci. Springer, Cham, 2022, pp. 172–185. doi:
10.1007/978-3-031-08740-0_15. url: https://doi.org/
10.1007/978-3-031-08740-0_15.

[MS23a] M. E. Maietti and P. Sabelli. “A topological counterpart of well-
founded trees in dependent type theory”. In: Electronic Notes
in Theoretical Informatics and Computer Science Volume 3 -
Proceedings of MFPS XXXIX (Nov. 2023). doi: 10.46298/
entics.11755. url: https://entics.episciences.org/
11755.

[MS23b] M. E. Maietti and G. Sambin. “The minimalist foundation and
Bishop’s constructive mathematics”. In: Handbook of construc-
tive mathematics. Vol. 185. Encyclopedia Math. Appl. Cam-

118

https://doi.org/10.23638/LMCS-17(2:21)2021
https://doi.org/10.23638/LMCS-17(2:21)2021
https://doi.org/https://doi.org/10.1016/S0168-0072(00)00012-9
https://doi.org/https://doi.org/10.1016/S0168-0072(00)00012-9
https://www.sciencedirect.com/science/article/pii/S0168007200000129
https://www.sciencedirect.com/science/article/pii/S0168007200000129
https://arxiv.org/abs/2111.15299
https://arxiv.org/abs/2111.15299
https://doi.org/10.1093/acprof:oso/9780198566519.003.0006
https://doi.org/10.1093/acprof:oso/9780198566519.003.0006
https://doi.org/10.1093/acprof:oso/9780198566519.003.0006
https://doi.org/10.1093/acprof:oso/9780198566519.003.0006
https://doi.org/10.1007/978-3-031-08740-0_15
https://doi.org/10.1007/978-3-031-08740-0_15
https://doi.org/10.1007/978-3-031-08740-0_15
https://doi.org/10.46298/entics.11755
https://doi.org/10.46298/entics.11755
https://entics.episciences.org/11755
https://entics.episciences.org/11755

bridge Univ. Press, Cambridge, 2023, pp. 525–563. isbn: 978-
1-316-51086-5.

[MS24] M. E. Maietti and P. Sabelli. “Equiconsistency of the Minimal-
ist Foundation with its classical version”. In: Annals of Pure
and Applied Logic (2024), p. 103524. issn: 0168-0072. doi:
https://doi.org/10.1016/j.apal.2024.103524. url:
https://www.sciencedirect.com/science/article/pii/

S0168007224001283.

[MV04] M. E. Maietti and S. Valentini. “A Structural Investigation
on Formal Topology: Coreflection of Formal Covers and Expo-
nentiability”. In: The Journal of Symbolic Logic 69.4 (2004),
pp. 967–1005. issn: 00224812. url: http://www.jstor.org/
stable/30041774 (visited on 03/21/2024).

[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in
Martin Löf ’s Type Theory. Clarendon Press, Oxford, 1990.

[Our05] N. Oury. “Extensionality in the Calculus of Constructions”. In:
Theorem Proving in Higher Order Logics. Ed. by Joe Hurd and
Tom Melham. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 278–293. isbn: 978-3-540-31820-0.

[Pal22] E. Palmgren. “From type theory to setoids and back”. In:Math-
ematical Structures in Computer Science 32.10 (2022), pp. 1283–
1312. doi: 10.1017/S0960129521000189.

[PATW02] Pultr, Aleš, Tholen, and Walter. “Free Quillen factorization
systems.” eng. In: Georgian Mathematical Journal 9.4 (2002),
pp. 807–820. url: http://eudml.org/doc/50826.

[Péd24] P. M. Pédrot. ““Upon This Quote I Will Build My Church
Thesis””. In: Proceedings of the 39th Annual ACM/IEEE Sym-
posium on Logic in Computer Science. LICS ’24. Tallinn, Es-
tonia: Association for Computing Machinery, 2024. doi: 10.
1145/3661814.3662070. url: https://doi.org/10.1145/
3661814.3662070.

[PS89] K. Petersson and D. Synek. “A set constructor for inductive sets
in Martin-Löf’s type theory”. In: Category theory and computer
science (Manchester, 1989). Vol. 389. Lecture Notes in Com-
put. Sci. Springer, Berlin, 1989, pp. 128–140. doi: 10.1007/
BFb0018349. url: https://doi.org/10.1007/BFb0018349.

119

https://doi.org/https://doi.org/10.1016/j.apal.2024.103524
https://www.sciencedirect.com/science/article/pii/S0168007224001283
https://www.sciencedirect.com/science/article/pii/S0168007224001283
http://www.jstor.org/stable/30041774
http://www.jstor.org/stable/30041774
https://doi.org/10.1017/S0960129521000189
http://eudml.org/doc/50826
https://doi.org/10.1145/3661814.3662070
https://doi.org/10.1145/3661814.3662070
https://doi.org/10.1145/3661814.3662070
https://doi.org/10.1145/3661814.3662070
https://doi.org/10.1007/BFb0018349
https://doi.org/10.1007/BFb0018349
https://doi.org/10.1007/BFb0018349

[Rat05] M. Rathjen. “Generalized inductive definitions in constructive
set theory”. In: From sets and types to topology and analy-
sis. Vol. 48. Oxford Logic Guides. Oxford Univ. Press, Oxford,
2005, pp. 23–40. doi: 10.1093/acprof:oso/9780198566519.
003.0002. url: https://doi.org/10.1093/acprof:oso/
9780198566519.003.0002.

[SA21] J. Sterling and C. Angiuli. “Normalization for Cubical Type
Theory”. In: 2021 36th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS). 2021, pp. 1–15. doi: 10.1109/
LICS52264.2021.9470719.

[Sab24] P. Sabelli. A topological reading of inductive and coinductive
definitions in Dependent Type Theory. 2024. arXiv: 2404.03494
[math.LO].

[Sam03] G. Sambin. “Some points in formal topology”. In: Theoretical
Computer Science 305 (2003), pp. 347–408.

[Sam19] G. Sambin. “Dynamics in Foundations: What Does It Mean in
the Practice of Mathematics?” In: Reflections on the Founda-
tions of Mathematics: Univalent Foundations, Set Theory and
General Thoughts. Ed. by Stefania Centrone, Deborah Kant,
and Deniz Sarikaya. Cham: Springer International Publishing,
2019, pp. 455–494. isbn: 978-3-030-15655-8. doi: 10.1007/
978-3-030-15655-8_21. url: https://doi.org/10.1007/
978-3-030-15655-8_21.

[Sam24] G. Sambin. Positive Topology. A New Practice in Constructive
Mathematic. Oxford Logic Guides. Cary, NC: Oxford University
Press, 2024.

[Sam87] G. Sambin. “Intuitionistic formal spaces - a first communi-
cation”. In: Mathematical logic and its applications. Plenum
(1987), pp. 187–204.

[See84] R. A. G. Seely. “Locally cartesian closed categories and type
theory”. In: Mathematical Proceedings of the Cambridge Philo-
sophical Society 95.1 (1984), pp. 33–48. doi: 10.1017/S0305004100061284.

[Sel97] J. P. Seldin. “On the proof theory of Coquand’s calculus of con-
structions”. In: Annals of Pure and Applied Logic 83.1 (1997),
pp. 23–101. issn: 0168-0072. doi: https://doi.org/10.1016/
S0168-0072(96)00008-5. url: https://www.sciencedirect.
com/science/article/pii/S0168007296000085.

120

https://doi.org/10.1093/acprof:oso/9780198566519.003.0002
https://doi.org/10.1093/acprof:oso/9780198566519.003.0002
https://doi.org/10.1093/acprof:oso/9780198566519.003.0002
https://doi.org/10.1093/acprof:oso/9780198566519.003.0002
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1109/LICS52264.2021.9470719
https://arxiv.org/abs/2404.03494
https://arxiv.org/abs/2404.03494
https://doi.org/10.1007/978-3-030-15655-8_21
https://doi.org/10.1007/978-3-030-15655-8_21
https://doi.org/10.1007/978-3-030-15655-8_21
https://doi.org/10.1007/978-3-030-15655-8_21
https://doi.org/10.1017/S0305004100061284
https://doi.org/https://doi.org/10.1016/S0168-0072(96)00008-5
https://doi.org/https://doi.org/10.1016/S0168-0072(96)00008-5
https://www.sciencedirect.com/science/article/pii/S0168007296000085
https://www.sciencedirect.com/science/article/pii/S0168007296000085

[Sim09] Stephen G. Simpson. Subsystems of Second Order Arithmetic.
2nd ed. Perspectives in Logic. Cambridge University Press,
2009.

[Smi88] J. M. Smith. “The Independence of Peano’s Fourth Axiom from
Martin-Löf’s Type Theory Without Universes”. In: The Jour-
nal of Symbolic Logic 53.3 (1988), pp. 840–845. issn: 00224812.
url: http://www.jstor.org/stable/2274575 (visited on
06/25/2024).

[Spa23] M. Spadetto. A conservativity result for homotopy elementary
types in dependent type theory. 2023. arXiv: 2303.05623 [math.LO].

[Str93] T. Streicher. “Investigations into intensional type theory”. PhD
thesis. Habilitationsschrift, Ludwig-Maximilians-Universität München,
1993.

[SV98] G. Sambin and S. Valentini. “Building up a toolbox for Martin-
Löf’s type theory: subset theory”. In: Twenty-five years of con-
structive type theory (Venice, 1995). Vol. 36. Oxford Logic Guides.
Oxford Univ. Press, New York, 1998, pp. 221–244. isbn: 0-19-
850127-7.

[TD88] A.S. Troelstra and D. van Dalen. Constructivism in Mathemat-
ics, Vol 1. ISSN. Elsevier Science, 1988. isbn: 9780080570884.
url: https://books.google.de/books?id=-tc2qp0-2bsC.

[Uni13] The Univalent Foundations Program. Homotopy type theory—
univalent foundations of mathematics. The Univalent Founda-
tions Program, Princeton, NJ; Institute for Advanced Study
(IAS), Princeton, NJ, 2013, pp. xiv+589.

[Wey18] H. Weyl. Das Kontinuum. Kritische Untersuchungen über die
Grundlagen der Analysis. Berlin, Boston: De Gruyter, 1918.
isbn: 9783112451144. doi: doi:10.1515/9783112451144. url:
https://doi.org/10.1515/9783112451144.

[WST19] T. Winterhalter, M. Sozeau, and N. Tabareau. “Eliminating
reflection from type theory”. In: Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Programs and
Proofs (2019). url: https://api.semanticscholar.org/
CorpusID:57379755.

121

http://www.jstor.org/stable/2274575
https://arxiv.org/abs/2303.05623
https://books.google.de/books?id=-tc2qp0-2bsC
https://doi.org/doi:10.1515/9783112451144
https://doi.org/10.1515/9783112451144
https://api.semanticscholar.org/CorpusID:57379755
https://api.semanticscholar.org/CorpusID:57379755

Appendix A

Rules of the Calculi

122

A.1 Minimal Type Theory mTT

A.1.1 Structural rules

Inclusion between kinds

props-into-prop
φ props
φ prop

props-into-set
φ props
φ set

set-into-col
A set

A col
prop-into-col

φ prop

φ col

Context formation and variable assumption

ax
() ctx

F-ctx
A col [Γ]

Γ, x ∈ A ctx
(with x fresh variable)

var
Γ, x ∈ A,∆ ctx

x ∈ A [Γ, x ∈ A,∆]

Equality rules

conv
a ∈ A A = B type

a ∈ B
eq-conv

a = b ∈ A A = B type

a = b ∈ B

type-ref
A type

A = A type
type-sym

B = A type

A = B type

type-tra
A = B type B = C type

A = C type

term-ref
a ∈ A

a = a ∈ A
term-sym

a = b ∈ A
b = a ∈ A

term-tra
a = b ∈ A b = c ∈ A

a = c ∈ A

type-sub
C type [Γ, x ∈ A,∆] a = b ∈ A [Γ]

C[a/x] = C[b/x] type [Γ,∆[a/x]]

term-sub
c ∈ C [Γ, x ∈ A,∆] a = b ∈ A [Γ]

c[a/x] = c[b/x] ∈ C[a/x] [Γ,∆[a/x]]

123

A.1.2 Type constructors

Falsum

F-⊥
⊥ props

E-⊥ φ prop p ∈ ⊥
El⊥(p) ∈ φ

Leibniz Propositional Equality

F-Id
A col a ∈ A b ∈ A

Id(A, a, b) prop
Fs-Id

A set a ∈ A b ∈ A
Id(A, a, b) props

I-Id
a ∈ A

id(a) ∈ Id(A, a, a)

E-Id
p ∈ Id(A, a, b) φ(x, y) prop [x ∈ A, y ∈ A] t(x) ∈ φ(x, x) [x ∈ A]

ElId(p, (x).t) ∈ φ(a, b)

βC-Id
a ∈ A φ(x, y) prop [x ∈ A, y ∈ A] t(x) ∈ φ(x, x) [x ∈ A]

ElId(id(a), (x).t) = t(a) ∈ φ(a, a)

Conjunction

F-∧ φ prop ψ prop

φ ∧ ψ prop
Fs-∧

φ props ψ props
φ ∧ ψ props

I-∧ p ∈ φ q ∈ ψ φ prop ψ prop

⟨p,∧ q⟩ ∈ φ ∧ ψ

E1-∧
p ∈ φ ∧ ψ
π∧
1 (p) ∈ φ

E2-∧
p ∈ φ ∧ ψ
π∧
2 (p) ∈ ψ

βC1-∧
p ∈ φ q ∈ ψ φ prop ψ prop

π∧
1 (⟨p,∧ q⟩) = p ∈ φ

βC2-∧
p ∈ φ q ∈ ψ φ prop ψ prop

π∧
2 (⟨p,∧ q⟩) = q ∈ ψ

124

Disjunction

F-∨ φ prop ψ prop

φ ∨ ψ prop
Fs-∨

φ props ψ props
φ ∨ ψ props

I1-∨
p ∈ φ φ prop ψ prop

inl∨(p) ∈ φ ∨ ψ
I2-∨

q ∈ ψ φ prop ψ prop

inr∨(q) ∈ φ ∨ ψ

E-∨ p ∈ φ ∨ ψ χ prop t(x) ∈ χ [x ∈ φ] s(x) ∈ χ [x ∈ ψ]
El∨(p, (x).t, (x).s) ∈ χ

βC1-∨
φ prop ψ prop χ prop p ∈ φ t(x) ∈ χ [x ∈ φ] s(x) ∈ χ [x ∈ ψ]

El∨(inl∨(p), (x).t, (x).s) = t(p) ∈ χ

βC2-∨
φ prop ψ prop χ prop q ∈ ψ t(x) ∈ χ [x ∈ φ] s(x) ∈ χ [x ∈ ψ]

El∨(inr∨(q), (x).t, (x).s) = s(q) ∈ χ

Implication

F-⇒ φ prop ψ prop

φ⇒ ψ prop
Fs-⇒

φ props ψ props
φ⇒ ψ props

I-⇒ φ prop ψ prop t(x) ∈ ψ [x ∈ φ]
(λ⇒x ∈ φ)t(x) ∈ φ⇒ ψ

E-⇒ p ∈ φ⇒ ψ q ∈ φ
Ap⇒(p, q) ∈ ψ

βC-⇒ φ prop ψ prop p ∈ φ t(x) ∈ ψ [x ∈ φ]
Ap⇒((λ⇒x ∈ φ)t(x), p) = t(p) ∈ ψ

125

Existential quantification

F-∃ φ(x) prop [x ∈ A]
(∃x ∈ A)φ(x) prop

Fs-∃
A set φ(x) props [x ∈ A]

(∃x ∈ A)φ(x) props

I-∃ φ(x) prop [x ∈ A] a ∈ A p ∈ φ(a)
⟨a,∃ p⟩ ∈ (∃x ∈ A)φ(x)

E-∃ p ∈ (∃x ∈ A)φ(x) ψ prop t(x, y) ∈ ψ [x ∈ A, y ∈ φ(x)]
El∃(p, (x, y).t) ∈ ψ

βC-∃

φ(x) prop [x ∈ A] a ∈ A p ∈ φ(a)
ψ prop t(x, y) ∈ ψ [x ∈ A, y ∈ φ(x)]

El∃(⟨a,∃ p⟩, (x, y).t) = t(a, p) ∈ ψ

Universal quantification

F-∀ φ(x) prop [x ∈ A]
(∀x ∈ A)φ(x) prop

Fs-∀
A set φ(x) props [x ∈ A]

(∀x ∈ A)φ(x) props

I-∀ φ(x) prop [x ∈ A] t(x) ∈ φ(x) [x ∈ A]
(λ∀x ∈ A)t(x) ∈ (∀x ∈ A)φ(x)

E-∀ p ∈ (∀x ∈ A)φ(x) a ∈ A
Ap∀(p, a) ∈ φ(a)

βC-∀ φ(x) prop [x ∈ A] t(x) ∈ φ(x) [x ∈ A] a ∈ A
Ap∀((λ∀x ∈ A)t(x), a) = t(a) ∈ φ(a)

Empty set

F-N0
N0 set

E-N0
a ∈ N0 B(x) col [x ∈ N0]

ElN0(a) ∈ B(a)

126

Singleton set

F-N1
N1 set

I-N1
⋆ ∈ N1

E-N1
a ∈ N1 B(x) col [x ∈ N1] b ∈ B(⋆)

ElN1(a, b) ∈ B(a)

βC-N1
B(x) col [x ∈ N1] b ∈ B(⋆)

ElN1(⋆, b) = b ∈ B(⋆)

Universe of small propositions à la Tarski

F-Props
Props col

I-Props
φ props
φ̂ ∈ Props

E-Props
c ∈ Props
T(c) props

C-Props
φ props

T(φ̂) = φ props
η-Props

c ∈ Props

T̂(c) = c ∈ Props

Eq-Props
φ = ψ props

φ̂ = ψ̂ ∈ Props
Eq-E-Props

c = d ∈ Props
T(c) = T(d) props

Dependent sums

F-Σ
B(x) col [x ∈ A]
(Σx ∈ A)B(x) col

Fs-Σ
A set B(x) set [x ∈ A]

(Σx ∈ A)B(x) set

I-Σ
a ∈ A b ∈ B(a) B(x) col [x ∈ A]

⟨a, b⟩ ∈ (Σx ∈ A)B(x)

E-Σ

c ∈ (Σx ∈ A)B(x)

M(z) col [z ∈ (Σx ∈ A)B(x)] m(x, y) ∈M(⟨x, y⟩) [x ∈ A, y ∈ B(x)]

ElΣ(c, (x, y).m) ∈M(c)

βC-Σ

B(x) col [x ∈ A] a ∈ A b ∈ B(a)

M(z) col [z ∈ (Σx ∈ A)B(x)] m(x, y) ∈M(⟨x, y⟩) [x ∈ A, y ∈ B(x)]

ElΣ(⟨a, b⟩, (x, y).m) = m(a, b) ∈M(⟨a, b⟩)

127

Dependent products

F-Π
A set B(x) set [x ∈ A]

(Πx ∈ A)B(x) set
F-ΠProps

A set

(Πx ∈ A)Props col

I-Π
t(x) ∈ B(x) [x ∈ A] (Πx ∈ A)B(x) col

(λx ∈ A)t(x) ∈ (Πx ∈ A)B(x)

E-Π
f ∈ (Πx ∈ A)B(x) a ∈ A

Ap(f, a) ∈ B(a)

βC-Π
t(x) ∈ B(x) [x ∈ A] (Πx ∈ A)B(x) col a ∈ A

Ap((λx ∈ A)t(x), a) = t(a) ∈ B(a)

Disjoint sums

F-+
A set B set

A+B set

I1-+
a ∈ A A+B set

inl(a) ∈ A+B
I2-+

b ∈ B A+B set

inr(b) ∈ A+B

E-+

c ∈ A+B

M(z) col [z ∈ A+B] t(x) ∈M(inl(x)) [x ∈ A] s(x) ∈M(inr(x)) [x ∈ B]

El+(c, (x).t, (x).s) ∈M(c)

βC1-+

a ∈ A
M(z) col [z ∈ A+B] t(x) ∈M(inl(x)) [x ∈ A] s(x) ∈M(inr(x)) [x ∈ B]

El+(inl(a), (x).t, (x).s) = t(a) ∈M(inl(a))

βC2-+

b ∈ B
M(z) col [z ∈ A+B] t(x) ∈M(inl(x)) [x ∈ A] s(x) ∈M(inr(x)) [x ∈ B]

El+(inr(b), (x).t, (x).s) = s(b) ∈M(inr(b))

128

Lists

F-List
A set

List(A) set

I1-List
A set

ϵ ∈ List(A)
I2-List

l ∈ List(A) a ∈ A
cons(l, a) ∈ List(A)

E-List

l ∈ List(A) M(z) col [z ∈ List(A)]

b ∈M(ϵ) c(x, y, z) ∈M(cons(x, y)) [x ∈ List(A), y ∈ A, z ∈M(x)]

ElList(l, b, (x, y, z).c) ∈M(l)

βC1-List

M(z) col [z ∈ List(A)]

b ∈M(ϵ) c(x, y, z) ∈M(cons(x, y)) [x ∈ List(A), y ∈ A, z ∈M(x)]

ElList(ϵ, b, (x, y, z).c) = b ∈M(ϵ)

βC2-List

l ∈ List(A) a ∈ A M(z) col [z ∈ List(A)]

b ∈M(ϵ) c(x, y, z) ∈M(cons(x, y)) [x ∈ List(A), y ∈ A, z ∈M(x)]

ElList(cons(l, a), b, (x, y, z).c) = c(l, a,ElList(l, b, (x, y, z).c)) ∈M(cons(l, a))

A.2 Extensional Minimal Type Theory emTT

A.2.1 Structural rules

Inclusion between kinds

props-into-prop
φ props
φ prop

props-into-set
φ props
φ set

set-into-col
A set

A col
prop-into-col

φ prop

φ col

Context formation and variable assumption

ax
() ctx

F-ctx
A col [Γ]

Γ, x ∈ A ctx
(with x fresh variable)

var
Γ, x ∈ A,∆ ctx

x ∈ A [Γ, x ∈ A,∆]

129

Equality rules

eq-props-into-prop
φ = ψ props
φ = ψ prop

eq-props-into-set
φ = ψ props
φ = ψ set

eq-set-into-col
A = B set

A = B col
eq-prop-into-col

φ = ψ prop

φ = ψ col

conv
a ∈ A A = B type

a ∈ B
eq-conv

a = b ∈ A A = B type

a = b ∈ B

type-ref
A type

A = A type
type-sym

B = A type

A = B type

type-tra
A = B type B = C type

A = C type

term-ref
a ∈ A

a = a ∈ A
term-sym

a = b ∈ A
b = a ∈ A

term-tra
a = b ∈ A b = c ∈ A

a = c ∈ A

Proof irrelevance

prop-true
φ prop p ∈ φ

true ∈ φ
prop-mono

φ prop p ∈ φ q ∈ φ
p = q ∈ φ

A.2.2 Type constructors

For readability, we postpone to the last paragraph the congruence rules of all
type and term constructors. The only exception is for the congruence rules
of the introduction term of the power-collection of the singleton and the
introduction term of the quotients, which do not follow the common trivial
pattern and are reported also in the corresponding section.

Falsum

F-⊥
⊥ props

E-⊥ φ prop ⊥ true

φ true

130

Extensional Propositional Equality

F-Eq
A col a ∈ A b ∈ A

Eq(A, a, b) prop
Fs-Eq

A set a ∈ A b ∈ A
Eq(A, a, b) props

I-Eq
a ∈ A

Eq(A, a, a) true
E-Eq

Eq(A, a, b) true

a = b ∈ A

Conjunction

F-∧ φ prop ψ prop

φ ∧ ψ prop
Fs-∧

φ props ψ props
φ ∧ ψ props

I-∧ φ true ψ true

φ ∧ ψ true
E1-∧

φ ∧ ψ true
φ true

E2-∧
φ ∧ ψ true
ψ true

Disjunction

F-∨ φ prop ψ prop

φ ∨ ψ prop
Fs-∨

φ props ψ props
φ ∨ ψ props

I1-∨
φ true φ prop ψ prop

φ ∨ ψ true
I2-∨

ψ true φ prop ψ prop

φ ∨ ψ true

E-∨ φ ∨ ψ true χ prop χ true [x ∈ φ] χ true [x ∈ ψ]
χ true

Implication

F-⇒ φ prop ψ prop

φ⇒ ψ prop
Fs-⇒

φ props ψ props
φ⇒ ψ props

I-⇒ φ prop ψ prop ψ true [x ∈ φ]
φ⇒ ψ true

E-⇒ φ⇒ ψ true φ true

ψ true

131

Existential quantification

F-∃ φ(x) prop [x ∈ A]
(∃x ∈ A)φ(x) prop

Fs-∃
A set φ(x) props [x ∈ A]

(∃x ∈ A)φ(x) props

I-∃ φ(x) prop [x ∈ A] a ∈ A φ(a) true

(∃x ∈ A)φ(x) true

E-∃ (∃x ∈ A)φ(x) true ψ prop ψ true [x ∈ A, y ∈ φ(x)]
ψ true

Universal quantification

F-∀ φ(x) prop [x ∈ A]
(∀x ∈ A)φ(x) prop

Fs-∀
A set φ(x) props [x ∈ A]

(∀x ∈ A)φ(x) props

I-∀ φ(x) prop [x ∈ A] φ(x) true [x ∈ A]
(∀x ∈ A)φ(x) true

E-∀ (∀x ∈ A)φ(x) true a ∈ A
φ(a) true

Empty set

F-N0
N0 set

E-N0
a ∈ N0 B(x) col [x ∈ N0]

ElN0(a) ∈ B(a)

Singleton set

F-N1
N1 set

I-N1
⋆ ∈ N1

E-N1
a ∈ N1 B(x) col [x ∈ N1] b ∈ B(⋆)

ElN1(a, b) ∈ B(a)

βC-N1
B(x) col [x ∈ N1] b ∈ B(⋆)

ElN1(⋆, b) = b ∈ B(⋆)

132

Power-collection of the singleton

F-P(1)
P(1) col

I-P(1) φ props
[φ] ∈ P(1)

eq-I-P(1) φ⇔ ψ true

[φ] = [ψ] ∈ P(1)
eff-P(1)[φ] = [ψ] ∈ P(1)

φ⇔ ψ true

Fs-Eq-P(1)
U ∈ P(1) V ∈ P(1)
Eq(P(1), U, V) props

η-P(1) U ∈ P(1)
[Eq(P(1), U, [⊤])] = U ∈ P(1)

Dependent sums

F-Σ
B(x) col [x ∈ A]
(Σx ∈ A)B(x) col

Fs-Σ
A set B(x) set [x ∈ A]

(Σx ∈ A)B(x) set

I-Σ
a ∈ A b ∈ B(a) B(x) col [x ∈ A]

⟨a, b⟩ ∈ (Σx ∈ A)B(x)

E-Σ

c ∈ (Σx ∈ A)B(x)

M(z) col [z ∈ (Σx ∈ A)B(x)] m(x, y) ∈M(⟨x, y⟩) [x ∈ A, y ∈ B(x)]

ElΣ(c, (x, y).m) ∈M(c)

βC-Σ

B(x) col [x ∈ A] a ∈ A b ∈ B(a)

M(z) col [z ∈ (Σx ∈ A)B(x)] m(x, y) ∈M(⟨x, y⟩) [x ∈ A, y ∈ B(x)]

ElΣ(⟨a, b⟩, (x, y).m) = m(a, b) ∈M(⟨a, b⟩)

Dependent products

F-Π
A set B(x) set [x ∈ A]

(Πx ∈ A)B(x) set
F-ΠP(1) A set

(Πx ∈ A)P(1) col

I-Π
t(x) ∈ B(x) [x ∈ A] (Πx ∈ A)B(x) col

(λx ∈ A)t(x) ∈ (Πx ∈ A)B(x)

E-Π
f ∈ (Πx ∈ A)B(x) a ∈ A

Ap(f, a) ∈ B(a)

βC-Π
t(x) ∈ B(x) [x ∈ A] (Πx ∈ A)B(x) col a ∈ A

Ap((λx ∈ A)t(x), a) = t(a) ∈ B(a)

ηC-Π
f ∈ (Πx ∈ A)B(x)

(λx ∈ A)Ap(f, x) = f ∈ (Πx ∈ A)B(x)

133

Disjoint sums

F-+
A set B set

A+B set

I1-+
a ∈ A A+B set

inl(a) ∈ A+B
I2-+

b ∈ B A+B set

inr(b) ∈ A+B

E-+

c ∈ A+B

M(z) col [z ∈ A+B] t(x) ∈M(inl(x)) [x ∈ A] s(x) ∈M(inr(x)) [x ∈ B]

El+(c, (x).t, (x).s) ∈M(c)

βC1-+

a ∈ A
M(z) col [z ∈ A+B] t(x) ∈M(inl(x)) [x ∈ A] s(x) ∈M(inr(x)) [x ∈ B]

El+(inl(a), (x).t, (x).s) = t(a) ∈M(inl(a))

βC2-+

b ∈ B
M(z) col [z ∈ A+B] t(x) ∈M(inl(x)) [x ∈ A] s(x) ∈M(inr(x)) [x ∈ B]

El+(inr(b), (x).t, (x).s) = s(b) ∈M(inr(b))

Lists

F-List
A set

List(A) set

I1-List
A set

ϵ ∈ List(A)
I2-List

l ∈ List(A) a ∈ A
cons(l, a) ∈ List(A)

E-List

l ∈ List(A) M(z) col [z ∈ List(A)]

b ∈M(ϵ) c(x, y, z) ∈M(cons(x, y)) [x ∈ List(A), y ∈ A, z ∈M(x)]

ElList(l, b, (x, y, z).c) ∈M(l)

βC1-List

M(z) col [z ∈ List(A)]

b ∈M(ϵ) c(x, y, z) ∈M(cons(x, y)) [x ∈ List(A), y ∈ A, z ∈M(x)]

ElList(ϵ, b, (x, y, z).c) = b ∈M(ϵ)

βC2-List

l ∈ List(A) a ∈ A M(z) col [z ∈ List(A)]

b ∈M(ϵ) c(x, y, z) ∈M(cons(x, y)) [x ∈ List(A), y ∈ A, z ∈M(x)]

ElList(cons(l, a), b, (x, y, z).c) = c(l, a,ElList(l, b, (x, y, z).c)) ∈M(cons(l, a))

134

Quotients

F-Q

A set R(x, y) props [x ∈ A, y ∈ A]
R(x, x) true [x ∈ A]
R(y, x) true [x, y ∈ A, p ∈ R(x, y)]
R(x, z) true [x, y, z ∈ A, p ∈ R(x, y), q ∈ R(y, z)]

A/R set

I-Q
A/R set a ∈ A

[a] ∈ A/R

eq-I-Q
A/R set a ∈ A b ∈ A R(a, b) true

[a] = [b] ∈ A/R
eff

[a] = [b] ∈ A/R
R(a, b) true

E-Q

M(z) col [z ∈ A/R]
c ∈ A/R m(x) ∈M([x]) [x ∈ A]
m(x) = m(y) ∈M([x]) [x ∈ A, y ∈ A, p ∈ R(x, y)]

ElQ(c, (x).m) ∈M(c)

βC-Q

M(z) col [z ∈ A/R]
a ∈ A m(x) ∈M([x]) [x ∈ A]
m(x) = m(y) ∈M([x]) [x ∈ A, y ∈ A, p ∈ R(x, y)]

ElQ([a], (x).m) = m(a) ∈M([a])

135

Congruence rules

eq-F-Eq
A = C col a = b ∈ A c = d ∈ C

Eq(A, a, b) = Eq(C, c, d) prop

eq-Fs-Eq
A = C set a = b ∈ A c = d ∈ C

Eq(A, a, b) = Eq(C, c, d) props

eq-F-∧ φ = φ′ prop ψ = ψ′ prop

φ ∧ ψ = φ′ ∧ ψ′ prop
Fs-∧

φ = φ′ props ψ = ψ′ props
φ ∧ ψ = φ′ ∧ ψ′ props

eq-F-∨ φ = φ′ prop ψ = ψ′ prop

φ ∨ ψ = φ′ ∨ ψ′ prop
Fs-∨

φ = φ′ props ψ = ψ′ props
φ ∨ ψ = φ′ ∨ ψ′ props

eq-F-⇒ φ = φ′ prop ψ = ψ′ prop

φ⇒ ψ = φ′ ⇒ ψ′ prop
Fs-⇒

φ = φ′ props ψ = ψ′ props
φ⇒ ψ = φ′ ⇒ ψ′ props

eq-F-∃ A = B col φ(x) = ψ(x) prop [x ∈ A]
(∃x ∈ A)φ(x) = (∃x ∈ B)ψ(x) prop

eq-Fs-∃
A = B set φ(x) = ψ(x) props [x ∈ A]
(∃x ∈ A)φ(x) = (∃x ∈ B)ψ(x) props

eq-F-∀ A = B col φ(x) = ψ(x) prop [x ∈ A]
(∀x ∈ A)φ(x) = (∀x ∈ B)ψ(x) prop

eq-Fs-∀
A = B set φ(x) = ψ(x) props [x ∈ A]
(∀x ∈ A)φ(x) = (∀x ∈ B)ψ(x) props

136

eq-E-N0
a = b ∈ N0 B(x) col [x ∈ N0]

ElN0(a) = ElN0(b) ∈ B(a)

eq-E-N1
a = a′ ∈ N1 B(x) col [x ∈ N1] b = b′ ∈ B(⋆)

ElN1(a, b) = ElN1(a
′, b′) ∈ B(a)

eq-I-P(1) φ⇔ ψ true

[φ] = [ψ] ∈ P(1)

eq-F-Σ
A = B col C(x) = D(x) col [x ∈ A]
(Σx ∈ A)C(x) = (Σx ∈ B)D(x) col

eq-Fs-Σ
A = B set C(x) = D(x) set [x ∈ A]
(Σx ∈ A)C(x) = (Σx ∈ B)D(x) set

eq-I-Σ
a = a′ ∈ A B(x) col [x ∈ A] b = b′ ∈ B(a)

⟨a, b⟩ = ⟨a′, b′⟩ ∈ (Σx ∈ A)B(x)

eq-E-Σ

c = c′ ∈ (Σx ∈ A)B(x)

M(z) col [z ∈ (Σx ∈ A)B(x)] m(x, y) = m′(x, y) ∈M(⟨x, y⟩) [x ∈ A, y ∈ B(x)]

ElΣ(c, (x, y).m) = ElΣ(c′, (x, y).m′) ∈M(c)

eq-F-Π
A = B col C(x) = D(x) col [x ∈ A]
(Πx ∈ A)C(x) = (Πx ∈ B)D(x) col

eq-F-ΠP(1) A = B set

(Πx ∈ A)P(1) = (Πx ∈ B)P(1) col

eq-I-Π
t(x) = s(x) ∈ B(x) [x ∈ A] (Πx ∈ A)B(x) col

(λx ∈ A)t(x) = (λx ∈ A)s(x) ∈ (Πx ∈ A)B(x)

eq-E-Π
f = g ∈ (Πx ∈ A)B(x) a = b ∈ A

Ap(f, a) = Ap(g, b) ∈ B(a)

137

eq-F-+
A = A′ set B = B′ set

A+B = A′ +B′ set

eq-I1-+
a = a′ ∈ A A+B set

inl(a) = inl(a′) ∈ A+B
eq-I2-+

b = b′ ∈ B A+B set

inr(b) = inr(b′) ∈ A+B

eq-E-+

c = c′ ∈ A+B M(z) col [z ∈ A+B]

t(x) = t′(x) ∈M(inl(x)) [x ∈ A] s(x) = s′(x) ∈M(inr(x)) [x ∈ B]

El+(c, (x).t, (x).s) = El+(c′, (x).t′, (x).s′) ∈M(c)

eq-F-List
A = B set

List(A) = List(B) set

eq-I2-List
l = l′ ∈ List(A) a = a′ ∈ A

cons(l, a) = cons(l′, a′) ∈ List(A)

eq-E-List

l = l′ ∈ List(A) M(z) col [z ∈ List(A)] b = b′ ∈M(ϵ)

c(x, y, z) = c′(x, y, z) ∈M(cons(x, y)) [x ∈ List(A), y ∈ A, z ∈M(x)]

ElList(l, b, (x, y, z).c) = ElList(l′, b′, (x, y, z).c′) ∈M(l)

eq-F-Q
A = B set R(x, y) = S(x, y) props [x ∈ A, y ∈ A] A/R set

A/R = B/S set

eq-I-Q
A/R set a ∈ A b ∈ A R(a, b) true

[a] = [b] ∈ A/R

eq-E-Q

M(z) col [z ∈ A/R]
c = c′ ∈ A/R m(x) = m′(x) ∈M([x]) [x ∈ A]
m(x) = m(y) ∈M([x]) [x ∈ A, y ∈ A, p ∈ R(x, y)]

ElQ(c, (x).m) = ElQ(c′, (x).m′) ∈M(c)

A.3 Rules for inductive constructors in MLTT

In the following, when we give the rules of a type constructor, we interpret
the formation rule’s premises as parameters of the constructor; we then take
them for granted in the premises of the other constructor’s rules.

138

Rules for dependent wellfounded trees

F-DW

A ∈ U0

I(x) ∈ U0 [x ∈ A]
Br(x, y) ∈ U0 [x ∈ A , y ∈ I(x)]
ar(x, y) ∈ Br(x, y)→ A [x ∈ A , y ∈ I(x)]

DWBr,ar ∈ A→ U0

I-DW
a ∈ A i ∈ I(a) f ∈ (Πz ∈ Br(a, i))DWBr,ar(ar(a, i, z))

dsup(a, i, f) ∈ DWBr,ar(a)

E-DW

M(x,w) type [x ∈ A ,w ∈ DWBr,ar(x)]

d(x, y, h, k) ∈M(x, dsup(x, y, h))

[x ∈ A, y ∈ I(x),
h ∈ (Πz ∈ Br(x, y))DWBr,ar(ar(x, y, z)),

k ∈ (Πz ∈ Br(x, y))M(ar(x, y, z), h(z))]

a ∈ A t ∈ DWBr,ar(a)

ElDW(a, t, (x, y, h, k).d) ∈M(a, t)

C-DW

M(x,w) type [x ∈ A ,w ∈ DWBr,ar(x)]

d(x, y, h, k) ∈M(x, dsup(x, y, h))

[x ∈ A, y ∈ I(x),
h ∈ (Πz ∈ Br(x, y))DWBr,ar(ar(x, y, z)),

k ∈ (Πz ∈ Br(x, y))M(ar(x, y, z), h(z))]

a ∈ A i ∈ I(a) f ∈ (Πz ∈ Br(a, i))DWBr,ar(ar(a, i, z))

ElDW(a, dsup(a, i, f), d) = d(a, i, f, λz.ElDW(ar(a, i, z), f(z), d)) ∈M(a, dsup(a, i, f))

Rules for inductive predicates in MLη
1

A ∈ U0

I(x) ∈ U0 [x ∈ A]
C(x, y) ∈ A→ U0 [x ∈ A , y ∈ I(x)]

IndI,C ∈ A→ U0
F-Ind

a ∈ A i ∈ I(a) p ∈ (Πx ∈ A)(C(a, i, x)→ IndI,C(x))

ind(a, i, p) ∈ IndI,C(a)
I-Ind

139

M(x,w) type [x ∈ A ,w ∈ IndI,C(x)]

d(x, y, h, k) ∈M(x, ind(x, y, h))

[x ∈ A, y ∈ I(x),
h ∈ (Πz ∈ A)(C(x, y, z)→ IndI,C(x)),

k ∈ (Πz ∈ A)(Πq ∈ C(x, y, z))M(z, h(z, q))]

a ∈ A p ∈ IndI,C(a)

ElInd(a, p, (x, y, h, k).d) ∈M(a, p)
E-Ind

M(x,w) type [x ∈ A ,w ∈ IndI,C(x)]

d(x, y, h, k) ∈M(x, ind(x, y, h))

[x ∈ A, y ∈ I(x),
h ∈ (Πz ∈ A)(C(x, y, z)→ IndI,C(x)),

k ∈ (Πz ∈ A)(Πq ∈ C(x, y, z))M(z, h(z, q))]

a ∈ A i ∈ I(a) p ∈ (Πx ∈ A)(C(a, i, x)→ IndI,C(x))

ElInd(a, ind(a, i, p), (x, y, h, k).d) = d(a, i, p, λz.λq.ElInd(z, p(z, q), d)) ∈M(a, ind(a, i, p))
C-Ind

Rules for inductive basic covers in MLη
1

A ∈ U0

I(x) ∈ U0 [x ∈ A]
C(x, y) ∈ A→ U0 [x ∈ A, y ∈ I(x)]
V ∈ A→ U0

− ◁I,C V ∈ A→ U0
F-◁

a ∈ A r ∈ V (a)

rf(a, r) ∈ a ◁I,C V
Irf -◁

a ∈ A i ∈ I(a) r ∈ (Πx ∈ A)(C(a, i, x)→ x ◁I,C V)

tr(a, i, r) ∈ a ◁I,C V
Itr-◁

M(x,w) type [x ∈ A,w ∈ x ◁I,C V]

q1(x, y) ∈M(x, rf(x, y)) [x ∈ A , y ∈ V (a)]

q2(x, y, h, k) ∈M(x, tr(x, y, h))

[x ∈ A , y ∈ I(x) ,
h ∈ (Πz ∈ A)(C(x, y, z)→ z ◁I,C V) ,

k ∈ (Πz ∈ A)(Πq ∈ C(x, y, z))M(z, h(z, q))]

a ∈ A p ∈ a ◁I,C V

El◁(a, p, (x, y).q1, (x, y, h, k).q2) ∈M(a, p)
E - ◁

140

M(x,w) type [x ∈ A,w ∈ x ◁I,C V]

q1(x, y) ∈M(x, rf(x, y)) [x ∈ A , y ∈ V (a)]

q2(x, y, h, k) ∈M(x, tr(x, y, h))

[x ∈ A , y ∈ I(x) ,
h ∈ (Πz ∈ A)(C(x, y, z)→ z ◁I,C V) ,

k ∈ (Πz ∈ A)(Πq ∈ C(x, y, z))M(z, h(z, q))]

a ∈ A r ∈ V (a)

El◁(a, rf(a, r), q1, q2) = q1(a, r) ∈M(a, rf(a, r))
Crf - ◁

M(x,w) type [x ∈ A,w ∈ x ◁I,C V]

q1(x, y) ∈M(x, rf(x, y)) [x ∈ A , y ∈ V (a)]

q2(x, y, h, k) ∈M(x, tr(x, y, h))

[x ∈ A , y ∈ I(x) ,
h ∈ (Πz ∈ A)(C(x, y, z)→ z ◁I,C V) ,

k ∈ (Πz ∈ A)(Πq ∈ C(x, y, z))M(z, h(z, q))]

a ∈ A i ∈ I(a) r ∈ (Πx ∈ A)(C(a, i, x)→ x ◁I,C V)

El◁(a, tr(a, i, r), q1, q2) = q2(a, i, λz.λq.El◁(z, r(z, q), q1, q2)) ∈M(a, tr(a, i, r))
Ctr - ◁

141

	An Introduction to the Minimalist Foundation
	Scope and Methods
	Formal Topology

	Compatibility with foundational approaches
	Computational interpretation of constructivism
	Bishop constructivism
	Classical predicativism à la Weyl

	Towards a formal notion of compatibility
	Levels of abstraction
	Types variety
	Comparison with other foundations

	The formal calculi
	Minimal Type Theory mTT
	Extensional Minimal Type Theory emTT

	What is like to do mathematics in it?
	Different notions of function
	Interaction between logic and type theory
	Basic set theory
	A categorical account

	Compatibility results

	Inductive and Coinductive Predicates
	Overview
	(Co)Inductive predicates in emTT
	(Co)Inductive predicates in mTT
	Topological (co)induction in MF
	(Co)Induction in MLTT
	Induction in MLTT
	Coinduction in MLTT

	Compatibility results

	Reversing the level structure
	Overview
	Propositional extensionality
	Canonical Isomorphisms
	Conservativity of propositional extensionality
	Equiconsistency of the two levels

	The classical version
	Overview
	The double-negation translation
	Compatibility with classical predicativism à la Weyl
	Equiconsistency of the Calculus of Constructions with its classical version

	Conclusions
	Rules of the Calculi
	Minimal Type Theory mTT
	Structural rules
	Type constructors

	Extensional Minimal Type Theory emTT
	Structural rules
	Type constructors

	Rules for inductive constructors in MLTT

