

Maria Emilia Maietti and Pietro Sabelli

University of Padova

Trimester Program "Prospects of Formal Mathematics"

Hausdorff Research Institute, 6/6/2024

Abstract of our talk

why developing Constructive Mathematics?

What best foundation for constructive mathematics ??

	classical	constructive
	ONE standard	NO standard
impredicative	Zermelo-Fraenkel set theory	finternal theory of topoi Coquand's Calculus of Constructions
predicative	Feferman's explicit maths	Aczel's CZF Martin-Löf's type theory Homotopy Type Theory Feferman's constructive expl. maths

Plurality of foundations \Rightarrow need of a minimalist foundation

What best foundation for constructive mathematics ??

j.w.w. Giovanni Sambin

our foundational approach

our foundational approach

classical predicative mathematics is viable

Notion of compatibility between theories

Notion of **compatibility** between theories

Examples:

Intuitionistic arithmetics is compatible with Classical arithmetics

Classical arithmetics is NOT compatible with Intuitionistic arithmetics

Compatibility problem in Bishop's view of constructive mathematics

Compatibility problems of some relevant foundations

Martin-Löf's type theory (all versions)

NON compatible

with the internal theory of toposes

(because of axiom of choice)

e ge

Aczel's Constructive Zermelo-Fraenkel set theory

and

Homotopy Type Theory

NON compatible

with classical predicativity a' la Weyl

(because of exponentiation of functional relations)

Axiom of choice

$\forall x \in A \; \exists y \in B \; R(x, y) \; \longrightarrow \; \exists f \in A \to B \; \forall x \in A \; R(x, f(x))$

a total relation contains the graph of a function.

An arithmetical theory incompatible with classical predicativity a' la Weyl

Prop.

```
Heyting arithmetics with finite types \mathbf{H}\mathbf{A}^\omega
```

+ internal rule of unique choice $iRC!_{Nat,Nat}$ + excluded middle EM

is impredicative

proof. We can encode the second order comprehension axiom

$$(\mathbf{CA}) \exists \mathbf{f}^{\mathbf{Nat}} \to \mathbf{Nat} \quad \forall x^{\mathbf{Nat}} \ (f(x) =_{\mathbf{Nat}} 1 \Leftrightarrow \phi(x))$$

where $\phi(x)$ is an arbitrary formula of the language provided that **f** does not occur free in ϕ . considering variables $\mathbf{f}^{\mathbf{Nat}} \to \mathbf{Nat}$ as second order variables

The internal rule of unique choice in Heyting arithmetics with finite types

Possible origin of incompatibility with classical predicativity a' la Weyl

the impredicative arithmetical theory $HA^{\omega} + iRC!_{Nat,Nat} + excluded middle EM$ can be interpreted in Martin-Löf's type theory (all versions) +EM Homotopy Type Theory +EM for h-props Aczel's Constructive Zermelo-Fraenkel set theory +EM

Contente-Maietti "On the Compatibility of Constructive Predicative Mathematics with Weyl's Classical Predicativity", 2024

A possible solution to previous compatibility problems

from Maietti-G.Sambin, "Toward a minimalist foundation for constructive mathematics", 2005

• perform program extraction from proofs

in the metatheory :

i.e. choice functions exist

only in the realizability model

- distinguish TWO NOTIONS of FUNCTIONS
- 1. **functional relations**, not closed under exponentiation
- 2. from lambda-terms closed under exponentiation
- make a **two-level foundation** distinguishing **languages**

for extensional math development / base for a proof-assistant

What foundation for COMPUTER-AIDED formalization of proofs?

joint with G. Sambin

a constructive foundation

should be equipped with

	extensional level	(used by mathematicians to do their proofs)	
	\Downarrow	interpreted via a QUOTIENT model	
	intensional level	(language of computer-aided formalized proofs)	
L	\downarrow		
a realizability model		y model (used by computer scientists to extract p	rograms)

Our two-level Minimalist Foundation

from [Maietti "A minimalist two-level foundation for constructive mathematics" Apal 2009]

What mathematics in MF?

MF was also designed to be a **mathematician user-friendly** foundation

for Martin-Löf -Sambin's Formal Topology

Positive Topology A New Practice in Constructive Mathematics

and Sambin's Positive Topology in

by possibly extending MF with **inductive-coinductive** definitions as in

M. Maietti, S. Maschio, M. Rathjen: A realizability semantics for inductive formal topologies, Church's Thesis and Axiom of Choice. LMCS 2021

M. Maietti, S. Maschio, M. Rathjen: Inductive and Coinductive Topological Generation with Church's thesis and the Axiom of Choice. LMCS 2022

two levels in MF needed for compatibility!

two levels in MF needed for compatibility!

Peculiarity of HoTT

Peculiarity of HoTT: it hosts the whole MF structure!

Peculiarities of MF

joint with **P. Sabelli**

MF is equiconsistent with **MF** + excluded middle

⇒ Dedekind/ Cauchy real numbers in MF (also + Excluded Middle) do not form a set

⇒ MF + Excluded Middle is a foundation for Classical Predicative Maths

⇒ MF is compatible with Classical Predicativity à la Weyl

PART II. EQUICONSISTENCY OF **MF** WITH ITS CLASSICAL VERSION

OUB MON N NOT NEGAT WON'T NOT 0 NEG DOUBLE

FIGURE: Simpson chalkboard gag S.11 E.6

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Using the double-negation translation, Gödel proved the following result.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem

Peano Arithmetic and Heyting Arithmetic are equiconsistent.

Using the double-negation translation, Gödel proved the following result.

THEOREM

Peano Arithmetic and Heyting Arithmetic are equiconsistent.

QUESTION AND ANSWER

Q: Is the classical version of the Minimalist Foundation still predicative?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Using the double-negation translation, Gödel proved the following result.

THEOREM

Peano Arithmetic and Heyting Arithmetic are equiconsistent.

QUESTION AND ANSWER

Q: Is the classical version of the Minimalist Foundation still predicative?

A: Yes, it is even equiconsistent with the intuitionistic version.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Using the double-negation translation, Gödel proved the following result.

Theorem

Peano Arithmetic and Heyting Arithmetic are equiconsistent.

QUESTION AND ANSWER

Q: Is the classical version of the Minimalist Foundation still predicative?

A: Yes, it is even equiconsistent with the intuitionistic version.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We proved it by suitably extending Gödel's double-negation translation.

PRELIMINARY RESULT

Recall the cornerstone of the whole system.

Theorem

The extensional level can be interpreted in the intensional one via a setoid model.¹

¹M. E. Maietti. "A minimalist two-level foundation for constructive mathematics". In: *Ann. Pure Appl. Logic* 160.3 (2009), pp. 319–354. ISSN: 0168-0072,1873-2461. DOI: 10.1016/j.apal.2009.01.006. URL: https://doi.org/10.1016/j.apal.2009.01.006. d = +

Recall the cornerstone of the whole system.

THEOREM

The extensional level can be interpreted in the intensional one via a setoid model. 1

As a preliminary result for this work, we proved its counterpart.

THEOREM

The intensional level can be interpreted in the extensional one using canonical isomorphisms.

¹Maietti, "A minimalist two-level foundation for constructive mathematics".

Recall the cornerstone of the whole system.

Theorem

The extensional level can be interpreted in the intensional one via a setoid model. 1

As a preliminary result for this work, we proved its counterpart.

THEOREM

The intensional level can be interpreted in the extensional one using canonical isomorphisms.

Since the two levels are equiconsistent, we are justified in **restricting the attention to the extensional level**, which is the one where mathematics is actually developed.

¹Maietti, "A minimalist two-level foundation for constructive mathematics".

CLASSICAL VERSION OF MINIMALIST FOUNDATION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A one-line description of the **extensional level**.

CLASSICAL VERSION OF MINIMALIST FOUNDATION

A one-line description of the **extensional level**. (STANDARD) INTUITIONISTIC VERSION

Intuitionistic f.o.l. predicatively typed by eMLTT + A/R + P(A).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A one-line description of the extensional level.

(STANDARD) INTUITIONISTIC VERSION Intuitionistic f.o.l. predicatively typed by eMLTT + A/R + P(A).

In particular, the Minimalist Foundation has primitive propositions among its types (as the Calculus of Constructions).

A one-line description of the extensional level.

(STANDARD) INTUITIONISTIC VERSION Intuitionistic f.o.l. predicatively typed by eMLTT + A/R + P(A).

In particular, the Minimalist Foundation has primitive propositions among its types (as the Calculus of Constructions).

CLASSICAL VERSION

The same as above, but with classical logic.

THE CHALLENGE

Logic and type-theory are highly intertwined:

- terms appear in formulas through equality a = b (as in the one-sorted case);
- types appear in formulas through dependent typing e.g. ∃x ∈ A.φ;
- formulas appear in types as in the quotient set constructor A/R;
- ▶ formulas appear in terms as in the subset term constructor $\{x \in A | \varphi(x)\} \in \mathcal{P}(A).$

We need to apply the translation to every entity!

$\neg\neg$ -translation for the Minimalist Foundation

Idea: keep translating propositions into ¬¬-stable propositions as in the case of predicate logic, while leaving unaltered type constructors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

¬¬-TRANSLATION FOR THE MINIMALIST FOUNDATION

Idea: keep translating propositions into $\neg\neg$ -stable propositions as in the case of predicate logic, while leaving unaltered type constructors.

Translation of logic.

$$\begin{split} \bot^{\mathcal{N}} &:\equiv \bot \\ (\varphi \land \psi)^{\mathcal{N}} &:\equiv \varphi^{\mathcal{N}} \land \psi^{\mathcal{N}} \\ (\varphi \Rightarrow \psi)^{\mathcal{N}} &:\equiv \varphi^{\mathcal{N}} \Rightarrow \psi^{\mathcal{N}} \\ (\varphi \lor \psi)^{\mathcal{N}} &:\equiv \neg \neg (\varphi^{\mathcal{N}} \lor \psi^{\mathcal{N}}) \\ (\exists x \in A . \varphi)^{\mathcal{N}} &:\equiv \neg \neg \exists x \in A^{\mathcal{N}} . \varphi^{\mathcal{N}} \\ (\forall x \in A . \varphi)^{\mathcal{N}} &:\equiv \forall x \in A^{\mathcal{N}} . \varphi^{\mathcal{N}} \\ (a =_{A} b)^{\mathcal{N}} &:\equiv a^{\mathcal{N}} =_{A^{\mathcal{N}}} b^{\mathcal{N}} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$\neg\neg$ -translation for the Minimalist Foundation

Idea: keep translating propositions into $\neg\neg$ -stable propositions as in the case of predicate logic, while leaving unaltered type constructors.

Translation of logic.

$$\begin{split} \bot^{\mathcal{N}} &:\equiv \bot \\ (\varphi \land \psi)^{\mathcal{N}} &:\equiv \varphi^{\mathcal{N}} \land \psi^{\mathcal{N}} \\ (\varphi \Rightarrow \psi)^{\mathcal{N}} &:\equiv \varphi^{\mathcal{N}} \Rightarrow \psi^{\mathcal{N}} \\ (\varphi \lor \psi)^{\mathcal{N}} &:\equiv \neg \neg (\varphi^{\mathcal{N}} \lor \psi^{\mathcal{N}}) \\ (\exists x \in A . \varphi)^{\mathcal{N}} &:\equiv \neg \neg \exists x \in A^{\mathcal{N}} . \varphi^{\mathcal{N}} \\ (\forall x \in A . \varphi)^{\mathcal{N}} &:\equiv \forall x \in A^{\mathcal{N}} . \varphi^{\mathcal{N}} \\ (a =_{A} b)^{\mathcal{N}} &:\equiv a^{\mathcal{N}} =_{A^{\mathcal{N}}} b^{\mathcal{N}} \end{split}$$

Can you spot the difference with Gödel's translation?

・ロト・西ト・山田・山田・山口・

$\neg\neg$ -translation for the Minimalist Foundation

Idea: keep translating propositions into $\neg\neg$ -stable propositions as in the case of predicate logic, while leaving unaltered type constructors.

Translation of type theory.

$$\mathbf{0}^{\mathcal{N}} :\equiv \mathbf{0}$$
$$\mathbf{1}^{\mathcal{N}} :\equiv \mathbf{1}$$
$$\operatorname{List}(A)^{\mathcal{N}} :\equiv \operatorname{List}(A^{\mathcal{N}})$$
$$(A+B)^{\mathcal{N}} :\equiv A^{\mathcal{N}} + B^{\mathcal{N}}$$
$$(\Sigma x \in A \cdot B)^{\mathcal{N}} :\equiv \Sigma x \in A^{\mathcal{N}} \cdot B^{\mathcal{N}}$$
$$(\Pi x \in A \cdot B)^{\mathcal{N}} :\equiv \Pi x \in A^{\mathcal{N}} \cdot B^{\mathcal{N}}$$
$$(A/R)^{\mathcal{N}} :\equiv A^{\mathcal{N}}/R^{\mathcal{N}}$$
$$\mathcal{P}(A)^{\mathcal{N}} :\equiv \Sigma U \in \mathcal{P}(A^{\mathcal{N}}) \cdot (U^{\complement})^{\complement} = U$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$\neg \neg$ -translation for the Minimalist Foundation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We say that a type A has $\neg\neg$ -stable equality if $x =_A y$ is a $\neg\neg$ -stable proposition.

¬¬-TRANSLATION FOR THE MINIMALIST FOUNDATION

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We say that a type A has $\neg\neg$ -stable equality if $x =_A y$ is a $\neg\neg$ -stable proposition.

LEMMA

All type constructors preserve $\neg\neg$ -stable equality.

¬¬-TRANSLATION FOR THE MINIMALIST FOUNDATION

We say that a type A has $\neg\neg$ -stable equality if $x =_A y$ is a $\neg\neg$ -stable proposition.

LEMMA

All type constructors preserve $\neg\neg$ -stable equality.

THEOREM

- if A is a type, then $A^{\mathcal{N}}$ is a type with $\neg\neg$ -stable equality;
- if φ is a proposition, then $\varphi^{\mathcal{N}}$ is a $\neg\neg$ -stable proposition;
- a judgement J is derivable in the classical version if and only if J^N is derivable in the intuitionistic version.

COROLLARY

The Minimalist Foundation is equiconsistent with its classical version.

Application I – Calculus of Constructions

The same techniques and results applies without any substantial changes to the **impredicative version** of the Minimalist Foundation, namely:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Application I – Calculus of Constructions

The same techniques and results applies without any substantial changes to the **impredicative version** of the Minimalist Foundation, namely:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

COROLLARY

The extensional version of the Calculus of Constructions is equiconsistent with its extensional, classical version.

Application II – Weyl's Continuum

The real numbers \mathbb{R} can be defined either using Dedekind cuts or Cauchy sequences, and we can prove that they form a *proper* collection, i.e. they cannot be isomorphic to any set.

²H. Ishihara and M. E. Maietti and S. Maschio, S. and Streicher, T.

Application II – Weyl's Continuum

The real numbers \mathbb{R} can be defined either using Dedekind cuts or Cauchy sequences, and we can prove that they form a *proper* collection, i.e. they cannot be isomorphic to any set.

PROOF (SKETCH).

Using classical logic we can prove $\mathbb{R} \cong \mathcal{P}(\mathbb{N})$. Thus, if \mathbb{R} were isomorphic to a set, full second-order arithmetic \mathbb{Z}_2 could be encoded in the classical version; but this contradicts known proof-theoretic results.²Ishihara et al., "Consistency of the intensional level of the Minimalist Foundation with Church's thesis and axiom of choice"

$$\textbf{Z}_2 \leq \textbf{MF}_{\textit{classical}} = \textbf{MF}_{\textit{intuitionistic}} \leq \widehat{\textbf{ID}}_1 < \textbf{Z}_2$$

- The three levels of the Minimalist Foundation are equiconsistent.
- Contrary to the most relevant foundations for constructive mathematics, the Minimalist Foundation is compatible with classical predicative mathematics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Open Problems

- We would like to prove the equiconsistency of MF_{cind} with its classical version. However, ¬¬-translation does not work with (co)inductive constructors!
- 2. Determine the exact proof-theoretic strength of MF.
- 3. Formalise everything!!

³M. E. Maietti and P. Sabelli. "A topological counterpart of well-founded trees in dependent type theory". In: *Electronic Notes in Theoretical Informatics and Computer Science* Volume 3 - Proceedings of MFPS XXXIX (Nov. 2023). DOI: 10.46298/entics.11755. URL: https://entics.episciences.org/11755; P. Sabelli. A topological reading of inductive and asinductive definitions in Dependent Taxa."

Open Problems

- We would like to prove the equiconsistency of MF_{cind} with its classical version. However, ¬¬-translation does not work with (co)inductive constructors!
- 2. Determine the exact proof-theoretic strength of MF.
- 3. Formalise everything!!

FIRST PROGRESS

- 1. We reduced the (co)inductive methods of Formal Topology to common schemes of (co)induction, comparable to Martin-Löf's W/M-types or Aczel's general inductive definitions.³
- 2. Now we can freely interchange between the intensional, extensional, and classical levels.

³Maietti and Sabelli, "A topological counterpart of well-founded trees in dependent type theory"; Sabelli, *A topological reading of inductive and coinductive definitions in Dependent Type Theory.*

BIBLIOGRAPHY

- Ishihara, H. et al. "Consistency of the intensional level of the Minimalist Foundation with Church's thesis and axiom of choice". In: Arch. Math. Logic 57.7-8 (2018), pp. 873–888. ISSN: 0933-5846. DOI: 10.1007/s00153-018-0612-9. URL: https://doi.org/10.1007/s00153-018-0612-9.
- Maietti, M. E. "A minimalist two-level foundation for constructive mathematics". In: Ann. Pure Appl. Logic 160.3 (2009), pp. 319–354. ISSN: 0168-0072,1873-2461. DOI: 10.1016/j.apal.2009.01.006. URL: https://doi.org/10.1016/j.apal.2009.01.006.
- Maietti, M. E. and P. Sabelli. "A topological counterpart of well-founded trees in dependent type theory". In: *Electronic Notes in Theoretical Informatics and Computer Science* Volume 3 -Proceedings of MFPS XXXIX (Nov. 2023). DOI: 10.46298/entics.11755. URL:

https://entics.episciences.org/11755.

Sabelli, P. A topological reading of inductive and coinductive definitions in Dependent Type Theory. 2024. arXiv: 2404.03494 [math.L0].

Thank you for your attention!