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The Minimalist Foundation [9, 5], for short MF, is a dependently typed
foundational system for constructive mathematics that serves as a common core
between the most relevant foundational theories such as Aczel’s constructive set
theory [1], Martin-Löf’s type theory [10], the internal language of a topos [6], the
Calculus of Construction [3], or Homotopy Type Theory [11]. Its development
has been strongly driven by the desire to find a suitable foundational system
for the constructive treatment of topology, known as Formal Topology [13]. In
particular, to implement its powerful (co)inductive methods [4], an extension
of MF with two new constructors formalising the inductive generation of basic
covers and the coinductive generation of positivity relations was presented in
[8].

In previous joint work with M. E. Maietti presented at CCC2022, we pro-
vided a topological counterpart of well-founded sets in terms of inductive su-
plattices introduced in Martin-Löf-Sambin’s formal topology. Here we dualize
this result for general (co)inductive predicates. To this purpose, we extend MF
with context-independent coinductive predicates and we provide a topological
counterpart for them in terms of Martin-Löf-Sambin’s positivity relations. Fur-
thermore, we show their equivalence with generalized inductive and coinductive
definitions of constructive set theory [12] and M-types in extensional Martin-
Löf’s type theory and Homotopy Type Theory [2]. Our work let us conclude
that the extension of MF with inductive suplattices and coinductive positivity
relations in [8] (see also [7]) has the full strength of the extension of MF with
general inductive and coinductive definitions.
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