{-# OPTIONS --without-K --exact-split #-} open import Data.Product -- Type of Coinductive predicates -- See Appendix B of -- "A topological reading of coinductive -- predicates in Dependent Type Theory" module Coinductive.Constructors.Coind-types {A : Set} (I : A → Set) (C : (a : A) → I a → A → Set) where postulate CoInd : A → Set El : (a : A) (i : I a) (p : CoInd a) → Σ A λ b → C a i b × CoInd b coind : ∀ {P : A → Set} → (c : ∀ a i → P a → Σ A λ b → C a i b × P b) → (a : A) → P a → CoInd a