{-# OPTIONS --without-K --exact-split #-}

open import Data.Unit
open import Data.Product

-- Part of Theorem 10 / Corollary 12 in
-- "A topological reading of coinductive
--  predicates in Dependent Type Theory"

module Coinductive.Equivalences.⋊-gives-Coind
  {A : Set}
  (I : A  Set)
  (C : (a : A)  I a  A  Set)
  where
  
  V : A  Set
  V = λ _  

  open import Coinductive.Constructors.⋊-types I C V

  CoInd : A  Set
  CoInd = 

  El : (a : A) (i : I a) (p : CoInd a)  Σ A λ b  C a i b × CoInd b
  El = cotr

  coind :
     {P : A  Set}
     (c :  a i  P a  Σ A λ b  C a i b × P b)
     (a : A)  P a  CoInd a
  coind = ⋊coind  _ _  tt)